振动触觉数据压缩的数据驱动方法

Xun Liu, M. Dohler
{"title":"振动触觉数据压缩的数据驱动方法","authors":"Xun Liu, M. Dohler","doi":"10.1109/SiPS47522.2019.9020534","DOIUrl":null,"url":null,"abstract":"The emerging Internet of Skills that exchanges tactile and other sensorial data, significantly augments traditional multimedia. The increase of data scale and modalities demands for codecs dedicated to these sensorial data. In this paper, we propose a codec for compression of vibrotactile data in the spirit of Weber’s law. To be specific, a companding function is applied to the vibrotactile data, so that the quantisation step of high amplitude is larger than that of low amplitude. The curve of the companding function is optimised through a data-driven approach. To evaluate the performance of the vibrotactile codec in terms of human perceived quality, rigorous subjective tests are conducted. The results demonstrate that 75% compression of vibrotactile data is achieved without perceivable degradation. More importantly, the computational complexity is much lower and the latency performance is superior, compared with other vibrotactile codecs. The computational complexity of the proposed codec is about 1/20 of that of previous codecs, while the time delay is approximately 1/30 of that of previous codec.","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Data-Driven Approach to Vibrotactile Data Compression\",\"authors\":\"Xun Liu, M. Dohler\",\"doi\":\"10.1109/SiPS47522.2019.9020534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emerging Internet of Skills that exchanges tactile and other sensorial data, significantly augments traditional multimedia. The increase of data scale and modalities demands for codecs dedicated to these sensorial data. In this paper, we propose a codec for compression of vibrotactile data in the spirit of Weber’s law. To be specific, a companding function is applied to the vibrotactile data, so that the quantisation step of high amplitude is larger than that of low amplitude. The curve of the companding function is optimised through a data-driven approach. To evaluate the performance of the vibrotactile codec in terms of human perceived quality, rigorous subjective tests are conducted. The results demonstrate that 75% compression of vibrotactile data is achieved without perceivable degradation. More importantly, the computational complexity is much lower and the latency performance is superior, compared with other vibrotactile codecs. The computational complexity of the proposed codec is about 1/20 of that of previous codecs, while the time delay is approximately 1/30 of that of previous codec.\",\"PeriodicalId\":256971,\"journal\":{\"name\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS47522.2019.9020534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

新兴的技能互联网可以交换触觉和其他感官数据,大大增强了传统的多媒体。数据规模和模式的增加对专用于这些传感数据的编解码器提出了更高的要求。在本文中,我们提出了一个编解码器的压缩振动触觉数据的韦伯定律的精神。具体而言,对振动触觉数据施加压缩函数,使高幅值的量化步长大于低幅值的量化步长。通过数据驱动的方法对压缩函数曲线进行优化。为了评估振动触觉编解码器在人类感知质量方面的性能,进行了严格的主观测试。结果表明,75%的振动触觉数据压缩达到没有可感知的退化。更重要的是,与其他振动触觉编解码器相比,该编解码器的计算复杂度低得多,延迟性能优越。该编解码器的计算复杂度约为原有编解码器的1/20,时间延迟约为原有编解码器的1/30。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Data-Driven Approach to Vibrotactile Data Compression
The emerging Internet of Skills that exchanges tactile and other sensorial data, significantly augments traditional multimedia. The increase of data scale and modalities demands for codecs dedicated to these sensorial data. In this paper, we propose a codec for compression of vibrotactile data in the spirit of Weber’s law. To be specific, a companding function is applied to the vibrotactile data, so that the quantisation step of high amplitude is larger than that of low amplitude. The curve of the companding function is optimised through a data-driven approach. To evaluate the performance of the vibrotactile codec in terms of human perceived quality, rigorous subjective tests are conducted. The results demonstrate that 75% compression of vibrotactile data is achieved without perceivable degradation. More importantly, the computational complexity is much lower and the latency performance is superior, compared with other vibrotactile codecs. The computational complexity of the proposed codec is about 1/20 of that of previous codecs, while the time delay is approximately 1/30 of that of previous codec.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory Reduction through Experience Classification f or Deep Reinforcement Learning with Prioritized Experience Replay Learning to Design Constellation for AWGN Channel Using Auto-Encoders SIR Beam Selector for Amazon Echo Devices Audio Front-End AVX-512 Based Software Decoding for 5G LDPC Codes Pipelined Implementations for Belief Propagation Polar Decoder: From Formula to Hardware
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1