基于自适应遗传算法的粒子群优化工业机械臂避障轨迹优化

Yu Chen, Liping Chen, J. Ding
{"title":"基于自适应遗传算法的粒子群优化工业机械臂避障轨迹优化","authors":"Yu Chen, Liping Chen, J. Ding","doi":"10.1109/ICARCE55724.2022.10046592","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an obstacle avoidance algorithm, which selects a point of the obstacle avoidance path as the chromosome, constructs the fitness function together with the path length, joint angle increment, and movement time as evaluation indexes, and performs scale transformation on the fitness to improve the competitiveness of the population. The algorithm cycles through the process of optimizing the velocity term in the chromosome in the first step with a particle swarm algorithm; selection in the second step; and crossover and mutation operations on individuals in the third step, in order to avoid the population falling into premature maturity, where the crossover and mutation probabilities vary adaptively with the results of the previous generation. The final smooth and continuous obstacle avoidance trajectory is obtained.","PeriodicalId":416305,"journal":{"name":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Genetic Algorithm Based Particle Swarm Optimization for Industrial Robotic Arm Obstacle Avoidance Trajectory Optimization\",\"authors\":\"Yu Chen, Liping Chen, J. Ding\",\"doi\":\"10.1109/ICARCE55724.2022.10046592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an obstacle avoidance algorithm, which selects a point of the obstacle avoidance path as the chromosome, constructs the fitness function together with the path length, joint angle increment, and movement time as evaluation indexes, and performs scale transformation on the fitness to improve the competitiveness of the population. The algorithm cycles through the process of optimizing the velocity term in the chromosome in the first step with a particle swarm algorithm; selection in the second step; and crossover and mutation operations on individuals in the third step, in order to avoid the population falling into premature maturity, where the crossover and mutation probabilities vary adaptively with the results of the previous generation. The final smooth and continuous obstacle avoidance trajectory is obtained.\",\"PeriodicalId\":416305,\"journal\":{\"name\":\"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCE55724.2022.10046592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCE55724.2022.10046592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种避障算法,该算法选择避障路径上的一个点作为染色体,以路径长度、关节角度增量、运动时间为评价指标构建适应度函数,并对适应度进行尺度变换,以提高群体的竞争力。该算法在第一步中使用粒子群算法循环优化染色体中的速度项;第二步选择;第三步对个体进行交叉和突变操作,以避免群体陷入早熟,其中交叉和突变概率随上一代结果自适应变化。最后得到光滑连续的避障轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Genetic Algorithm Based Particle Swarm Optimization for Industrial Robotic Arm Obstacle Avoidance Trajectory Optimization
In this paper, we propose an obstacle avoidance algorithm, which selects a point of the obstacle avoidance path as the chromosome, constructs the fitness function together with the path length, joint angle increment, and movement time as evaluation indexes, and performs scale transformation on the fitness to improve the competitiveness of the population. The algorithm cycles through the process of optimizing the velocity term in the chromosome in the first step with a particle swarm algorithm; selection in the second step; and crossover and mutation operations on individuals in the third step, in order to avoid the population falling into premature maturity, where the crossover and mutation probabilities vary adaptively with the results of the previous generation. The final smooth and continuous obstacle avoidance trajectory is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of MobileRobot Navigation System Based on ROS Platform Cooperative Pursuit in a Non-closed Bounded Domain 3D Reconstruction of Astronomical Site Selection Based on Multi-Source Remote Sensing Design and Implementation of Manipulator Based on Arduino Dynamic Reversible Data Hiding for Edge Contrast Enhancement of Medical Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1