{"title":"一种用于图像分割的高效灰度聚类算法","authors":"Fan-Chieh Cheng, Yu-Kumg Chen, Kuan-Ting Liu","doi":"10.1109/CAR.2009.89","DOIUrl":null,"url":null,"abstract":"Gray-level clustering is an important procedure in image processing, which reduces the gray-level of an image. In order to display an image with high gray level in a screen with lower gray level, a good gray-level clustering algorithm is necessary to complete this job. Based on the mean value and standard deviation of histogram within a sub-interval, a novel recursive algorithm for solving the gray-level reduction is proposed in this paper. It divides the sub-interval recursively until the difference between original image and clustered image within a given threshold. Experiments are carried out for some samples with high gray level to demonstrate the computational advantage of the proposed method.","PeriodicalId":320307,"journal":{"name":"2009 International Asia Conference on Informatics in Control, Automation and Robotics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Efficient Gray-level Clustering Algorithm for Image Segmentation\",\"authors\":\"Fan-Chieh Cheng, Yu-Kumg Chen, Kuan-Ting Liu\",\"doi\":\"10.1109/CAR.2009.89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gray-level clustering is an important procedure in image processing, which reduces the gray-level of an image. In order to display an image with high gray level in a screen with lower gray level, a good gray-level clustering algorithm is necessary to complete this job. Based on the mean value and standard deviation of histogram within a sub-interval, a novel recursive algorithm for solving the gray-level reduction is proposed in this paper. It divides the sub-interval recursively until the difference between original image and clustered image within a given threshold. Experiments are carried out for some samples with high gray level to demonstrate the computational advantage of the proposed method.\",\"PeriodicalId\":320307,\"journal\":{\"name\":\"2009 International Asia Conference on Informatics in Control, Automation and Robotics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Asia Conference on Informatics in Control, Automation and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAR.2009.89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Asia Conference on Informatics in Control, Automation and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAR.2009.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient Gray-level Clustering Algorithm for Image Segmentation
Gray-level clustering is an important procedure in image processing, which reduces the gray-level of an image. In order to display an image with high gray level in a screen with lower gray level, a good gray-level clustering algorithm is necessary to complete this job. Based on the mean value and standard deviation of histogram within a sub-interval, a novel recursive algorithm for solving the gray-level reduction is proposed in this paper. It divides the sub-interval recursively until the difference between original image and clustered image within a given threshold. Experiments are carried out for some samples with high gray level to demonstrate the computational advantage of the proposed method.