利用重合全色图像和随机混合模型增强高光谱图像的分辨率

M. Eismann, R. Hardie
{"title":"利用重合全色图像和随机混合模型增强高光谱图像的分辨率","authors":"M. Eismann, R. Hardie","doi":"10.1109/WARSD.2003.1295206","DOIUrl":null,"url":null,"abstract":"A maximum a posteriori (MAP) estimation approach to the hyperspectral resolution enhancement problem is described for enhancing the spatial resolution of a hyperspectral image using a higher resolution, coincident, panchromatic image. The approach makes use of a stochastic mixing model (SMM) of the underlying spectral scene content to develop a cost function that simultaneously optimizes the estimated hyperspectral scene relative to the observed hyperspectral and panchromatic imagery, as well as the local statistics of the spectral mixing model. The incorporation of the stochastic mixing model is found to be the key ingredient to reconstructing subpixel spectral information in that it provides the necessary constraints that lead to a well-conditioned linear system of equations for the high resolution hyperspectral image estimate. The mathematical formulation of the method is described, and enhancement results are provided for a synthetically-generated hyperspectral image data set and compared to prior methods. In general, it is found that the MAP/SMM method is able to reconstruct sub-pixel information in several principal components of the high resolution hyperspectral image estimate, while the enhancement for conventional methods, like those based on least-squares estimation, is limited primarily to the first principal component (i.e., the intensity component).","PeriodicalId":395735,"journal":{"name":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Resolution enhancement of hyperspectral imagery using coincident panchromatic imagery and a stochastic mixing model\",\"authors\":\"M. Eismann, R. Hardie\",\"doi\":\"10.1109/WARSD.2003.1295206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A maximum a posteriori (MAP) estimation approach to the hyperspectral resolution enhancement problem is described for enhancing the spatial resolution of a hyperspectral image using a higher resolution, coincident, panchromatic image. The approach makes use of a stochastic mixing model (SMM) of the underlying spectral scene content to develop a cost function that simultaneously optimizes the estimated hyperspectral scene relative to the observed hyperspectral and panchromatic imagery, as well as the local statistics of the spectral mixing model. The incorporation of the stochastic mixing model is found to be the key ingredient to reconstructing subpixel spectral information in that it provides the necessary constraints that lead to a well-conditioned linear system of equations for the high resolution hyperspectral image estimate. The mathematical formulation of the method is described, and enhancement results are provided for a synthetically-generated hyperspectral image data set and compared to prior methods. In general, it is found that the MAP/SMM method is able to reconstruct sub-pixel information in several principal components of the high resolution hyperspectral image estimate, while the enhancement for conventional methods, like those based on least-squares estimation, is limited primarily to the first principal component (i.e., the intensity component).\",\"PeriodicalId\":395735,\"journal\":{\"name\":\"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WARSD.2003.1295206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WARSD.2003.1295206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文描述了一种用于高光谱分辨率增强问题的最大后验(MAP)估计方法,用于使用更高分辨率、一致的全色图像来增强高光谱图像的空间分辨率。该方法利用底层光谱场景内容的随机混合模型(SMM)来开发一个成本函数,该函数可以同时优化相对于观测到的高光谱和全色图像的估计高光谱场景,以及光谱混合模型的局部统计。随机混合模型的引入是重建亚像元光谱信息的关键因素,它为高分辨率高光谱图像估计提供了必要的约束条件,从而得到条件良好的线性方程组。描述了该方法的数学公式,并给出了合成高光谱图像数据集的增强结果,并与先前的方法进行了比较。总的来说,MAP/SMM方法能够重建高分辨率高光谱图像估计的多个主成分中的亚像素信息,而传统方法(如基于最小二乘估计的方法)的增强主要局限于第一个主成分(即强度成分)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resolution enhancement of hyperspectral imagery using coincident panchromatic imagery and a stochastic mixing model
A maximum a posteriori (MAP) estimation approach to the hyperspectral resolution enhancement problem is described for enhancing the spatial resolution of a hyperspectral image using a higher resolution, coincident, panchromatic image. The approach makes use of a stochastic mixing model (SMM) of the underlying spectral scene content to develop a cost function that simultaneously optimizes the estimated hyperspectral scene relative to the observed hyperspectral and panchromatic imagery, as well as the local statistics of the spectral mixing model. The incorporation of the stochastic mixing model is found to be the key ingredient to reconstructing subpixel spectral information in that it provides the necessary constraints that lead to a well-conditioned linear system of equations for the high resolution hyperspectral image estimate. The mathematical formulation of the method is described, and enhancement results are provided for a synthetically-generated hyperspectral image data set and compared to prior methods. In general, it is found that the MAP/SMM method is able to reconstruct sub-pixel information in several principal components of the high resolution hyperspectral image estimate, while the enhancement for conventional methods, like those based on least-squares estimation, is limited primarily to the first principal component (i.e., the intensity component).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A residual-based approach to classification of remote sensing images Operational segmentation and classification of SAR sea ice imagery The spectral similarity scale and its application to the classification of hyperspectral remote sensing data Further results on AMM for endmember induction Spatial/Spectral analysis of hyperspectral image data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1