噪声输入的无监督分词

Jahn Heymann, Oliver Walter, Reinhold Häb-Umbach, B. Raj
{"title":"噪声输入的无监督分词","authors":"Jahn Heymann, Oliver Walter, Reinhold Häb-Umbach, B. Raj","doi":"10.1109/ASRU.2013.6707773","DOIUrl":null,"url":null,"abstract":"In this paper we present an algorithm for the unsupervised segmentation of a character or phoneme lattice into words. Using a lattice at the input rather than a single string accounts for the uncertainty of the character/phoneme recognizer about the true label sequence. An example application is the discovery of lexical units from the output of an error-prone phoneme recognizer in a zero-resource setting, where neither the lexicon nor the language model is known. Recently a Weighted Finite State Transducer (WFST) based approach has been published which we show to suffer from an issue: language model probabilities of known words are computed incorrectly. Fixing this issue leads to greatly improved precision and recall rates, however at the cost of increased computational complexity. It is therefore practical only for single input strings. To allow for a lattice input and thus for errors in the character/phoneme recognizer, we propose a computationally efficient suboptimal two-stage approach, which is shown to significantly improve the word segmentation performance compared to the earlier WFST approach.","PeriodicalId":265258,"journal":{"name":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Unsupervised word segmentation from noisy input\",\"authors\":\"Jahn Heymann, Oliver Walter, Reinhold Häb-Umbach, B. Raj\",\"doi\":\"10.1109/ASRU.2013.6707773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an algorithm for the unsupervised segmentation of a character or phoneme lattice into words. Using a lattice at the input rather than a single string accounts for the uncertainty of the character/phoneme recognizer about the true label sequence. An example application is the discovery of lexical units from the output of an error-prone phoneme recognizer in a zero-resource setting, where neither the lexicon nor the language model is known. Recently a Weighted Finite State Transducer (WFST) based approach has been published which we show to suffer from an issue: language model probabilities of known words are computed incorrectly. Fixing this issue leads to greatly improved precision and recall rates, however at the cost of increased computational complexity. It is therefore practical only for single input strings. To allow for a lattice input and thus for errors in the character/phoneme recognizer, we propose a computationally efficient suboptimal two-stage approach, which is shown to significantly improve the word segmentation performance compared to the earlier WFST approach.\",\"PeriodicalId\":265258,\"journal\":{\"name\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2013.6707773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2013.6707773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本文提出了一种字符或音素格的无监督分割算法。在输入处使用格而不是单个字符串可以解决字符/音素识别器对真实标签序列的不确定性。一个示例应用程序是在零资源设置下,从容易出错的音素识别器的输出中发现词汇单位,在这种情况下,词典和语言模型都不知道。最近发表了一种基于加权有限状态传感器(WFST)的方法,我们发现它存在一个问题:已知词的语言模型概率计算不正确。解决这个问题可以大大提高精度和召回率,但代价是增加了计算复杂性。因此,它只适用于单个输入字符串。为了允许格子输入,从而消除字符/音素识别器中的错误,我们提出了一种计算效率高的次优两阶段方法,与早期的WFST方法相比,该方法显着提高了分词性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised word segmentation from noisy input
In this paper we present an algorithm for the unsupervised segmentation of a character or phoneme lattice into words. Using a lattice at the input rather than a single string accounts for the uncertainty of the character/phoneme recognizer about the true label sequence. An example application is the discovery of lexical units from the output of an error-prone phoneme recognizer in a zero-resource setting, where neither the lexicon nor the language model is known. Recently a Weighted Finite State Transducer (WFST) based approach has been published which we show to suffer from an issue: language model probabilities of known words are computed incorrectly. Fixing this issue leads to greatly improved precision and recall rates, however at the cost of increased computational complexity. It is therefore practical only for single input strings. To allow for a lattice input and thus for errors in the character/phoneme recognizer, we propose a computationally efficient suboptimal two-stage approach, which is shown to significantly improve the word segmentation performance compared to the earlier WFST approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning filter banks within a deep neural network framework Efficient nearly error-less LVCSR decoding based on incremental forward and backward passes Porting concepts from DNNs back to GMMs Discriminative piecewise linear transformation based on deep learning for noise robust automatic speech recognition Acoustic modeling using transform-based phone-cluster adaptive training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1