人工智能在COVID-19诊断中的未来

L. Lisienkova, I. P. Mitrofanova
{"title":"人工智能在COVID-19诊断中的未来","authors":"L. Lisienkova, I. P. Mitrofanova","doi":"10.31145/1999-513x-2022-2-88-92","DOIUrl":null,"url":null,"abstract":"The article discusses the possibilities of using arti cial intelligence to detect COVID-19 disease. Based on the research, the best practices and potentially effective approaches to using effective machine and deep learning algorithms are presented. Various groups of initial data have been selected that are suitable for different tasks, on the basis of which the trained model can predict a fairly correct result. The analysis of modern Russian and foreign scienti c articles published over the past year is carried out.","PeriodicalId":196813,"journal":{"name":"Quality. Innovation. Education","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FUTURE OF ARTIFICIAL INTELLIGENCE IN THE DIAGNOSIS OF COVID-19\",\"authors\":\"L. Lisienkova, I. P. Mitrofanova\",\"doi\":\"10.31145/1999-513x-2022-2-88-92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article discusses the possibilities of using arti cial intelligence to detect COVID-19 disease. Based on the research, the best practices and potentially effective approaches to using effective machine and deep learning algorithms are presented. Various groups of initial data have been selected that are suitable for different tasks, on the basis of which the trained model can predict a fairly correct result. The analysis of modern Russian and foreign scienti c articles published over the past year is carried out.\",\"PeriodicalId\":196813,\"journal\":{\"name\":\"Quality. Innovation. Education\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality. Innovation. Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31145/1999-513x-2022-2-88-92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality. Innovation. Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31145/1999-513x-2022-2-88-92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文章讨论了利用人工智能检测COVID-19疾病的可能性。在此基础上,提出了使用有效的机器和深度学习算法的最佳实践和潜在有效方法。选择了适合不同任务的各种初始数据组,在此基础上训练的模型可以预测出相当正确的结果。对过去一年发表的现代俄罗斯和外国科学文章进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FUTURE OF ARTIFICIAL INTELLIGENCE IN THE DIAGNOSIS OF COVID-19
The article discusses the possibilities of using arti cial intelligence to detect COVID-19 disease. Based on the research, the best practices and potentially effective approaches to using effective machine and deep learning algorithms are presented. Various groups of initial data have been selected that are suitable for different tasks, on the basis of which the trained model can predict a fairly correct result. The analysis of modern Russian and foreign scienti c articles published over the past year is carried out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Features safety model of industrial control system The future engineers’ professional mobility development in higher school on the example of the course “Professional English” based on the contextual approach The methods of selection and calculation of energy characteristics of technological laser in pulse mode Models and decision support system for exploratory research to identify opportunities for import substitution of high-tech products Discrete parametric optimization for very high frequency analog filters synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1