B. Jaskorzyńska, L. Wosinski, S. Lourdudoss, F. Olsson
{"title":"非均质集成有源硅基光子学","authors":"B. Jaskorzyńska, L. Wosinski, S. Lourdudoss, F. Olsson","doi":"10.1109/ICTON.2008.4598581","DOIUrl":null,"url":null,"abstract":"We review major breakthroughs in realizing silicon-based active components by heterogeneous integration with III-V semiconductors, or nonlinear organic materials. In more detail we describe examples of our concepts and technological approach addressing this goal. This includes designs for widely tunable filters and new routes for heteroepitaxy and selective area growth of InP on silicon.","PeriodicalId":230802,"journal":{"name":"2008 10th Anniversary International Conference on Transparent Optical Networks","volume":"417 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Si-based photonics via heterogeneous integration\",\"authors\":\"B. Jaskorzyńska, L. Wosinski, S. Lourdudoss, F. Olsson\",\"doi\":\"10.1109/ICTON.2008.4598581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review major breakthroughs in realizing silicon-based active components by heterogeneous integration with III-V semiconductors, or nonlinear organic materials. In more detail we describe examples of our concepts and technological approach addressing this goal. This includes designs for widely tunable filters and new routes for heteroepitaxy and selective area growth of InP on silicon.\",\"PeriodicalId\":230802,\"journal\":{\"name\":\"2008 10th Anniversary International Conference on Transparent Optical Networks\",\"volume\":\"417 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 10th Anniversary International Conference on Transparent Optical Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTON.2008.4598581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 10th Anniversary International Conference on Transparent Optical Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTON.2008.4598581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Active Si-based photonics via heterogeneous integration
We review major breakthroughs in realizing silicon-based active components by heterogeneous integration with III-V semiconductors, or nonlinear organic materials. In more detail we describe examples of our concepts and technological approach addressing this goal. This includes designs for widely tunable filters and new routes for heteroepitaxy and selective area growth of InP on silicon.