D. Bender, R. Morgan, V. Nadkarni, C. Nataraj
{"title":"Classification of asphyxia & ventricular fibrillation induced cardiac arrest for cardiopulmonary resuscitation","authors":"D. Bender, R. Morgan, V. Nadkarni, C. Nataraj","doi":"10.1109/HIC.2017.8227625","DOIUrl":null,"url":null,"abstract":"In this study we address an important pediatric cardiopulmonary resuscitation problem to identify the cause of a cardiac arrest during the beginning of cardiopulmonary resuscitation. A support vector algorithm was trained and tested using a feature set constructed through wavelet transform analysis of experimental electrocardiography and heart rate data provided by Children's Hospital of Philadelphia. The approach developed in this study yielded an average classification accuracy above 93%.","PeriodicalId":120815,"journal":{"name":"2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIC.2017.8227625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项研究中,我们解决了一个重要的儿科心肺复苏问题,以确定在心肺复苏开始时心脏骤停的原因。利用对费城儿童医院提供的实验心电图和心率数据进行小波变换分析构建的特征集,对支持向量算法进行训练和测试。本研究中开发的方法产生了93%以上的平均分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of asphyxia & ventricular fibrillation induced cardiac arrest for cardiopulmonary resuscitation
In this study we address an important pediatric cardiopulmonary resuscitation problem to identify the cause of a cardiac arrest during the beginning of cardiopulmonary resuscitation. A support vector algorithm was trained and tested using a feature set constructed through wavelet transform analysis of experimental electrocardiography and heart rate data provided by Children's Hospital of Philadelphia. The approach developed in this study yielded an average classification accuracy above 93%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Label-free detection of lactoferrin and beta-2-microglobuin in contrived tear film using a low-cost electrical biosensor chip Development of an AI-based non-invasive Pulse AudioGram monitoring device for arrhythmia screening Comparison of sleep parameters assessed by actigraphy of healthy young adults from a small town and a megalopolis in an emerging country A dedicated bit-serial hardware neuron for massively-parallel neural networks in fast epilepsy diagnosis A feasibility study on a low-cost, smartphone-based solution of pulse transit time measurement using cardio-mechanical signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1