将非标准表转换为形式化表

Huili Su, Yukun Li, Xiaoye Wang, Gang Hao, Yongxuan Lai, Weiwei Wang
{"title":"将非标准表转换为形式化表","authors":"Huili Su, Yukun Li, Xiaoye Wang, Gang Hao, Yongxuan Lai, Weiwei Wang","doi":"10.1109/WISA.2017.38","DOIUrl":null,"url":null,"abstract":"Tables and spreadsheets on the Internet often contain valuable information, but are created by people who have different individuation. As a result, the similar data are often issued with different structures. This limits the integration of such tables. This paper aims to overcome this problem by automatically analyzing the structure area and propose the method transforming the tables into formal relational tables. We propose the methods on identifying structure area, modeling the table structure based on tree and methods to generate the 1NF schema of the original table. We proved the correctness of the method in semantic and the experiment results with tables from different areas demonstrate the effectiveness of our method.","PeriodicalId":204706,"journal":{"name":"2017 14th Web Information Systems and Applications Conference (WISA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Transforming a Nonstandard Table into Formalized Tables\",\"authors\":\"Huili Su, Yukun Li, Xiaoye Wang, Gang Hao, Yongxuan Lai, Weiwei Wang\",\"doi\":\"10.1109/WISA.2017.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tables and spreadsheets on the Internet often contain valuable information, but are created by people who have different individuation. As a result, the similar data are often issued with different structures. This limits the integration of such tables. This paper aims to overcome this problem by automatically analyzing the structure area and propose the method transforming the tables into formal relational tables. We propose the methods on identifying structure area, modeling the table structure based on tree and methods to generate the 1NF schema of the original table. We proved the correctness of the method in semantic and the experiment results with tables from different areas demonstrate the effectiveness of our method.\",\"PeriodicalId\":204706,\"journal\":{\"name\":\"2017 14th Web Information Systems and Applications Conference (WISA)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th Web Information Systems and Applications Conference (WISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2017.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th Web Information Systems and Applications Conference (WISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2017.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

互联网上的表格和电子表格通常包含有价值的信息,但它们是由具有不同个性化的人创建的。因此,类似的数据往往以不同的结构发布。这限制了这些表的集成。本文旨在通过自动分析结构区域来解决这一问题,并提出了将数据表转换为形式关系表的方法。提出了结构区域的识别方法、基于树的表结构建模方法以及生成原始表的1NF模式的方法。从语义上验证了该方法的正确性,用不同区域的表格进行的实验结果也验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transforming a Nonstandard Table into Formalized Tables
Tables and spreadsheets on the Internet often contain valuable information, but are created by people who have different individuation. As a result, the similar data are often issued with different structures. This limits the integration of such tables. This paper aims to overcome this problem by automatically analyzing the structure area and propose the method transforming the tables into formal relational tables. We propose the methods on identifying structure area, modeling the table structure based on tree and methods to generate the 1NF schema of the original table. We proved the correctness of the method in semantic and the experiment results with tables from different areas demonstrate the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Time Series Classification via Sparse Linear Combination Checking the Statutes in Chinese Judgment Document Based on Editing Distance Algorithm Information Extraction from Chinese Judgment Documents Topic Classification Based on Improved Word Embedding Keyword Extraction for Social Media Short Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1