利用历史天气数据和气候变化预测进行负荷消耗预测

Po-Chen Chen, M. Kezunovic
{"title":"利用历史天气数据和气候变化预测进行负荷消耗预测","authors":"Po-Chen Chen, M. Kezunovic","doi":"10.1109/ISAP.2017.8071415","DOIUrl":null,"url":null,"abstract":"The weather impact a major factor in operation of power systems. From the long-term planning perspective, it is not enough to predict whether impacts caused by short-term changes in the atmosphere but one also needs to account for the impact of long-term climate change as well. This paper demonstrates how to utilize the historical weather data and climate change projections in a large (macro) geographical area to predict future load patterns in a relatively small (micro) geographical area. The results show that the impact of temperature rising can have either positive or negative impact on the load, and the deviations may be large depending on the projected climate change data.","PeriodicalId":257100,"journal":{"name":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Load consumption prediction utilizing historical weather data and climate change projections\",\"authors\":\"Po-Chen Chen, M. Kezunovic\",\"doi\":\"10.1109/ISAP.2017.8071415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The weather impact a major factor in operation of power systems. From the long-term planning perspective, it is not enough to predict whether impacts caused by short-term changes in the atmosphere but one also needs to account for the impact of long-term climate change as well. This paper demonstrates how to utilize the historical weather data and climate change projections in a large (macro) geographical area to predict future load patterns in a relatively small (micro) geographical area. The results show that the impact of temperature rising can have either positive or negative impact on the load, and the deviations may be large depending on the projected climate change data.\",\"PeriodicalId\":257100,\"journal\":{\"name\":\"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2017.8071415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2017.8071415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

天气是影响电力系统运行的一个重要因素。从长期规划的角度来看,仅仅预测大气中的短期变化是否会造成影响是不够的,还需要考虑到长期气候变化的影响。本文演示了如何利用大(宏观)地理区域的历史天气数据和气候变化预测来预测相对较小(微观)地理区域的未来负荷模式。结果表明,气温上升对负荷的影响既有正影响,也有负影响,且随气候变化预估数据的变化偏差可能较大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Load consumption prediction utilizing historical weather data and climate change projections
The weather impact a major factor in operation of power systems. From the long-term planning perspective, it is not enough to predict whether impacts caused by short-term changes in the atmosphere but one also needs to account for the impact of long-term climate change as well. This paper demonstrates how to utilize the historical weather data and climate change projections in a large (macro) geographical area to predict future load patterns in a relatively small (micro) geographical area. The results show that the impact of temperature rising can have either positive or negative impact on the load, and the deviations may be large depending on the projected climate change data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a multi-agent system for distributed voltage regulation Machine learning versus ray-tracing to forecast irradiance for an edge-computing SkyImager Modified teaching-learning based optimization algorithm and damping of inter-area oscillations through VSC-HVDC Intelligent system for automatic performance evaluation of distribution system operators Methodology for islanding operation of distributed synchronous generators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1