随机混合单调系统的有效验证

Maxence Dutreix, S. Coogan
{"title":"随机混合单调系统的有效验证","authors":"Maxence Dutreix, S. Coogan","doi":"10.1109/ICCPS.2018.00023","DOIUrl":null,"url":null,"abstract":"We present an efficient computational procedure to perform model checking on discrete-time, mixed monotone stochastic systems subject to an affine random disturbance. Specifically, we exploit the structure of such systems in order to efficiently compute a finite-state Interval-valued Markov Chain (IMC) that over-approximates the system's behavior. To that end, we first make the assumption that the disturbance is unimodal, symmetric, and independent on each coordinate of the domain. Next, given a rectangular partition of the state-space, we compute bounds on the probability of transition between all the states in the partition. The ease of computing the one-step reachable set of rectangular states under mixed monotone dynamics renders the computation of these transition bounds highly efficient. We furthermore investigate a method for over-approximating the IMC of mixed monotone systems when the disturbance is only approximately unimodal symmetric, and we discuss state-space refinement heuristics. Lastly, we present two verification case studies.","PeriodicalId":199062,"journal":{"name":"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Efficient Verification for Stochastic Mixed Monotone Systems\",\"authors\":\"Maxence Dutreix, S. Coogan\",\"doi\":\"10.1109/ICCPS.2018.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an efficient computational procedure to perform model checking on discrete-time, mixed monotone stochastic systems subject to an affine random disturbance. Specifically, we exploit the structure of such systems in order to efficiently compute a finite-state Interval-valued Markov Chain (IMC) that over-approximates the system's behavior. To that end, we first make the assumption that the disturbance is unimodal, symmetric, and independent on each coordinate of the domain. Next, given a rectangular partition of the state-space, we compute bounds on the probability of transition between all the states in the partition. The ease of computing the one-step reachable set of rectangular states under mixed monotone dynamics renders the computation of these transition bounds highly efficient. We furthermore investigate a method for over-approximating the IMC of mixed monotone systems when the disturbance is only approximately unimodal symmetric, and we discuss state-space refinement heuristics. Lastly, we present two verification case studies.\",\"PeriodicalId\":199062,\"journal\":{\"name\":\"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPS.2018.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPS.2018.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了一个有效的计算程序来执行模型检验的离散时间,混合单调随机系统受到仿射随机干扰。具体来说,我们利用这种系统的结构,以便有效地计算一个有限状态区间值马尔可夫链(IMC),过度逼近系统的行为。为此,我们首先假设扰动是单峰的,对称的,并且独立于域的每个坐标。接下来,给定状态空间的矩形分区,我们计算分区中所有状态之间转移的概率界限。混合单调动力学下一步可达矩形状态集的计算简便,使得这些过渡界的计算效率很高。进一步研究了扰动为近似单峰对称时混合单调系统IMC的过逼近方法,并讨论了状态空间改进启发式方法。最后,我们给出了两个验证案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Verification for Stochastic Mixed Monotone Systems
We present an efficient computational procedure to perform model checking on discrete-time, mixed monotone stochastic systems subject to an affine random disturbance. Specifically, we exploit the structure of such systems in order to efficiently compute a finite-state Interval-valued Markov Chain (IMC) that over-approximates the system's behavior. To that end, we first make the assumption that the disturbance is unimodal, symmetric, and independent on each coordinate of the domain. Next, given a rectangular partition of the state-space, we compute bounds on the probability of transition between all the states in the partition. The ease of computing the one-step reachable set of rectangular states under mixed monotone dynamics renders the computation of these transition bounds highly efficient. We furthermore investigate a method for over-approximating the IMC of mixed monotone systems when the disturbance is only approximately unimodal symmetric, and we discuss state-space refinement heuristics. Lastly, we present two verification case studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Formation Control and Persistent Monitoring in the OpenUAV Swarm Simulator on the NSF CPS-VO OpenUAV: A UAV Testbed for the CPS and Robotics Community Dynamic Intersections and Self-Driving Vehicles Dynamic Integration of Heterogeneous Transportation Modes under Disruptive Events Ordering Events Based on Intentionality in Cyber-Physical Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1