基于神经网络的入侵检测的级联结构元专家方法

Maxime Labonne, Alexis Olivereau, Baptiste Polvé, D. Zeghlache
{"title":"基于神经网络的入侵检测的级联结构元专家方法","authors":"Maxime Labonne, Alexis Olivereau, Baptiste Polvé, D. Zeghlache","doi":"10.1109/CCNC.2019.8651856","DOIUrl":null,"url":null,"abstract":"An ensemble learning approach for classification in intrusion detection is proposed. Its application to the KDD Cup 99 and NSL-KDD datasets consistently increases the classification accuracy compared to previous techniques. The cascade-structured meta-specialists architecture is based on a three-step optimization method: data augmentation, hyperparameters optimization and ensemble learning. Classifiers are first created with a strong specialization in each specific class. These specialists are then combined to form meta-specialists, more accurate than the best classifiers that compose them. Finally, meta-specialists are arranged in a cascading architecture where each classifier is successively given the opportunity to recognize its own class. This method is particularly useful for datasets where training and test sets differ greatly, as in this case. The cascade-structured meta-specialists approach achieved a very high classification accuracy (94.44% on KDD Cup 99 test set and 88.39% on NSL-KDD test set) with a low false positive rate (0.33% and 1.94% respectively).","PeriodicalId":285899,"journal":{"name":"2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Cascade-structured Meta-Specialists Approach for Neural Network-based Intrusion Detection\",\"authors\":\"Maxime Labonne, Alexis Olivereau, Baptiste Polvé, D. Zeghlache\",\"doi\":\"10.1109/CCNC.2019.8651856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ensemble learning approach for classification in intrusion detection is proposed. Its application to the KDD Cup 99 and NSL-KDD datasets consistently increases the classification accuracy compared to previous techniques. The cascade-structured meta-specialists architecture is based on a three-step optimization method: data augmentation, hyperparameters optimization and ensemble learning. Classifiers are first created with a strong specialization in each specific class. These specialists are then combined to form meta-specialists, more accurate than the best classifiers that compose them. Finally, meta-specialists are arranged in a cascading architecture where each classifier is successively given the opportunity to recognize its own class. This method is particularly useful for datasets where training and test sets differ greatly, as in this case. The cascade-structured meta-specialists approach achieved a very high classification accuracy (94.44% on KDD Cup 99 test set and 88.39% on NSL-KDD test set) with a low false positive rate (0.33% and 1.94% respectively).\",\"PeriodicalId\":285899,\"journal\":{\"name\":\"2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCNC.2019.8651856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC.2019.8651856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了一种集成学习的入侵检测分类方法。与以前的技术相比,它在KDD Cup 99和NSL-KDD数据集上的应用不断提高了分类精度。级联结构的元专家体系结构基于三步优化方法:数据增强、超参数优化和集成学习。首先在每个特定类中使用强专门化创建分类器。然后将这些专家组合成元专家,比组成它们的最佳分类器更准确。最后,元专家被安排在级联体系结构中,其中每个分类器依次有机会识别自己的类。这种方法对于训练集和测试集差异很大的数据集特别有用,就像在这种情况下一样。级联结构元专家方法的分类准确率非常高(KDD Cup 99测试集为94.44%,NSL-KDD测试集为88.39%),假阳性率较低(分别为0.33%和1.94%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Cascade-structured Meta-Specialists Approach for Neural Network-based Intrusion Detection
An ensemble learning approach for classification in intrusion detection is proposed. Its application to the KDD Cup 99 and NSL-KDD datasets consistently increases the classification accuracy compared to previous techniques. The cascade-structured meta-specialists architecture is based on a three-step optimization method: data augmentation, hyperparameters optimization and ensemble learning. Classifiers are first created with a strong specialization in each specific class. These specialists are then combined to form meta-specialists, more accurate than the best classifiers that compose them. Finally, meta-specialists are arranged in a cascading architecture where each classifier is successively given the opportunity to recognize its own class. This method is particularly useful for datasets where training and test sets differ greatly, as in this case. The cascade-structured meta-specialists approach achieved a very high classification accuracy (94.44% on KDD Cup 99 test set and 88.39% on NSL-KDD test set) with a low false positive rate (0.33% and 1.94% respectively).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Reliability Analysis of TSCH Protocol in a Mobile Scenario 5G K-SimSys for System-level Evaluation of Massive MIMO Location corroboration using passive observations of IEEE 802.11 Access Points A Fuzzy Logic Based Electric Vehicle Scheduling in Smart Charging Network Efficient Interest Satisfaction in Content Centric Wireless Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1