基于初震的地震主运动模糊神经网络预测模型

H. Tsunekawa
{"title":"基于初震的地震主运动模糊神经网络预测模型","authors":"H. Tsunekawa","doi":"10.1109/IECON.1998.723942","DOIUrl":null,"url":null,"abstract":"A technique to predict principal motions of earthquakes using preliminary tremors, has been developed. Taking advantage of the time lag between them, we can take suitable countermeasures against the principal motions that affect urban structures; e.g. an escape from dangerous zones, stopping elevators and gas supply, and activating AMD (active mass damper) systems. A structured neural network is used to construct a peak ground acceleration prediction model, where inputs are fuzzified shaking direction data, and power spectrum and maximum acceleration of preliminary tremors. The proposed model has been improved by handling some earthquakes in Ibaraki-ken south-west zone that least fit the model as exceptions. Mean square error of the improved model is reduced to one third of the statistical model.","PeriodicalId":377136,"journal":{"name":"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A fuzzy neural network prediction model of the principal motions of earthquakes based on preliminary tremors\",\"authors\":\"H. Tsunekawa\",\"doi\":\"10.1109/IECON.1998.723942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A technique to predict principal motions of earthquakes using preliminary tremors, has been developed. Taking advantage of the time lag between them, we can take suitable countermeasures against the principal motions that affect urban structures; e.g. an escape from dangerous zones, stopping elevators and gas supply, and activating AMD (active mass damper) systems. A structured neural network is used to construct a peak ground acceleration prediction model, where inputs are fuzzified shaking direction data, and power spectrum and maximum acceleration of preliminary tremors. The proposed model has been improved by handling some earthquakes in Ibaraki-ken south-west zone that least fit the model as exceptions. Mean square error of the improved model is reduced to one third of the statistical model.\",\"PeriodicalId\":377136,\"journal\":{\"name\":\"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.1998.723942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1998.723942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

一种利用初震预测地震主运动的技术已经发展起来。利用两者之间的时间差,对影响城市结构的主要运动采取相应的对策;例如,逃离危险区域,停止电梯和气体供应,启动AMD(主动质量阻尼器)系统。以模糊化的地震方向数据、初震的功率谱和最大加速度数据为输入,利用结构化神经网络构建了峰值地加速度预测模型。通过处理茨城县西南地区一些最不符合模型的地震作为例外,所提出的模型得到了改进。改进模型的均方误差降至统计模型的三分之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fuzzy neural network prediction model of the principal motions of earthquakes based on preliminary tremors
A technique to predict principal motions of earthquakes using preliminary tremors, has been developed. Taking advantage of the time lag between them, we can take suitable countermeasures against the principal motions that affect urban structures; e.g. an escape from dangerous zones, stopping elevators and gas supply, and activating AMD (active mass damper) systems. A structured neural network is used to construct a peak ground acceleration prediction model, where inputs are fuzzified shaking direction data, and power spectrum and maximum acceleration of preliminary tremors. The proposed model has been improved by handling some earthquakes in Ibaraki-ken south-west zone that least fit the model as exceptions. Mean square error of the improved model is reduced to one third of the statistical model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel zero-voltage soft-switching converter for switched reluctance motor drives A novel two-quadrant zero-current-transition converter for DC motor drives Design support system for Japanese kimono Hierarchical motor diagnosis utilizing structural knowledge and a self-learning neuro-fuzzy scheme Torque control of harmonic drive gears with built-in sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1