Yameng Zhang, Long Bai, Li Liu, Hongliang Ren, Max Q.-H. Meng
{"title":"基于深度强化学习的无线胶囊内镜胃覆盖扫描控制","authors":"Yameng Zhang, Long Bai, Li Liu, Hongliang Ren, Max Q.-H. Meng","doi":"10.1109/ROBIO55434.2022.10012018","DOIUrl":null,"url":null,"abstract":"Due to its non-invasive and painless characteristics, wireless capsule endoscopy has become the new gold standard for assessing gastrointestinal disorders. Omissions, however, could occur throughout the examination since controlling capsule endoscope can be challenging. In this work, we control the magnetic capsule endoscope for the coverage scanning task in the stomach based on reinforcement learning so that the capsule can comprehensively scan every corner of the stomach. We apply a well-made virtual platform named VR-Caps to simulate the process of stomach coverage scanning with a capsule endoscope model. We utilize and compare two deep reinforcement learning algorithms, the Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) algorithms, to train the permanent magnetic agent, which actuates the capsule endoscope directly via magnetic fields and then optimizes the scanning efficiency of stomach coverage. We analyze the pros and cons of the two algorithms with different hyperparameters and achieve a coverage rate of 98.04% of the stomach area within 150.37 seconds.","PeriodicalId":151112,"journal":{"name":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep Reinforcement Learning-Based Control for Stomach Coverage Scanning of Wireless Capsule Endoscopy\",\"authors\":\"Yameng Zhang, Long Bai, Li Liu, Hongliang Ren, Max Q.-H. Meng\",\"doi\":\"10.1109/ROBIO55434.2022.10012018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its non-invasive and painless characteristics, wireless capsule endoscopy has become the new gold standard for assessing gastrointestinal disorders. Omissions, however, could occur throughout the examination since controlling capsule endoscope can be challenging. In this work, we control the magnetic capsule endoscope for the coverage scanning task in the stomach based on reinforcement learning so that the capsule can comprehensively scan every corner of the stomach. We apply a well-made virtual platform named VR-Caps to simulate the process of stomach coverage scanning with a capsule endoscope model. We utilize and compare two deep reinforcement learning algorithms, the Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) algorithms, to train the permanent magnetic agent, which actuates the capsule endoscope directly via magnetic fields and then optimizes the scanning efficiency of stomach coverage. We analyze the pros and cons of the two algorithms with different hyperparameters and achieve a coverage rate of 98.04% of the stomach area within 150.37 seconds.\",\"PeriodicalId\":151112,\"journal\":{\"name\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO55434.2022.10012018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO55434.2022.10012018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Reinforcement Learning-Based Control for Stomach Coverage Scanning of Wireless Capsule Endoscopy
Due to its non-invasive and painless characteristics, wireless capsule endoscopy has become the new gold standard for assessing gastrointestinal disorders. Omissions, however, could occur throughout the examination since controlling capsule endoscope can be challenging. In this work, we control the magnetic capsule endoscope for the coverage scanning task in the stomach based on reinforcement learning so that the capsule can comprehensively scan every corner of the stomach. We apply a well-made virtual platform named VR-Caps to simulate the process of stomach coverage scanning with a capsule endoscope model. We utilize and compare two deep reinforcement learning algorithms, the Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) algorithms, to train the permanent magnetic agent, which actuates the capsule endoscope directly via magnetic fields and then optimizes the scanning efficiency of stomach coverage. We analyze the pros and cons of the two algorithms with different hyperparameters and achieve a coverage rate of 98.04% of the stomach area within 150.37 seconds.