初级起落架基准问题安装效果的数值研究

Yun-ge Hou, D. Angland, A. Scotto
{"title":"初级起落架基准问题安装效果的数值研究","authors":"Yun-ge Hou, D. Angland, A. Scotto","doi":"10.2514/6.2018-3468","DOIUrl":null,"url":null,"abstract":"A weakly compressible, wall-modelled Large-Eddy Simulation (WMLES) solver is used to predict the aerodynamic flow and far-field acoustics of the 4-wheel Rudimentary Landing Gear (RLG) from the Benchmark Problems for Airframe Noise Computations (BANC). The main purposes of this study are to test (1) methods to computationally model the mounting plane that was used in the experiments and (2) choice of solid FW-H surfaces to correctly predict the far-field noise including the installation effects. Both weakly compressible and incompressible solvers were used to simulate the flowfield. The reflective mounting plane was modelled with slip and no-slip boundary conditions. Predictions of far-field acoustics using different solid FW-H surfaces are compared with experimental measurements. With an incompressible solver, reflection peaks were absent from the predictions using only the landing gear as an integral surface, but could be partially recovered by adding the landing gear’s mirrored image into the FW-H integral surface. For the weakly compressible solutions, these reflection peaks were captured by using the landing gear surface as the FWH integral surface. However, the peaks were amplified by including the landing gear’s mirrored image. Using an FW-H integral surface that consisted of the landing gear and slip-wall mounting plane was found to generate excessive low-frequency far-field noise with a weakly compressible solver. The over-prediction with these FW-H surfaces, was eliminated by modelling the mounting plane with the exact dimensions and a no-slip boundary conditions.","PeriodicalId":429337,"journal":{"name":"2018 AIAA/CEAS Aeroacoustics Conference","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Numerical Study of Installation Effects of the Rudimentary Landing Gear Benchmark Problem\",\"authors\":\"Yun-ge Hou, D. Angland, A. Scotto\",\"doi\":\"10.2514/6.2018-3468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A weakly compressible, wall-modelled Large-Eddy Simulation (WMLES) solver is used to predict the aerodynamic flow and far-field acoustics of the 4-wheel Rudimentary Landing Gear (RLG) from the Benchmark Problems for Airframe Noise Computations (BANC). The main purposes of this study are to test (1) methods to computationally model the mounting plane that was used in the experiments and (2) choice of solid FW-H surfaces to correctly predict the far-field noise including the installation effects. Both weakly compressible and incompressible solvers were used to simulate the flowfield. The reflective mounting plane was modelled with slip and no-slip boundary conditions. Predictions of far-field acoustics using different solid FW-H surfaces are compared with experimental measurements. With an incompressible solver, reflection peaks were absent from the predictions using only the landing gear as an integral surface, but could be partially recovered by adding the landing gear’s mirrored image into the FW-H integral surface. For the weakly compressible solutions, these reflection peaks were captured by using the landing gear surface as the FWH integral surface. However, the peaks were amplified by including the landing gear’s mirrored image. Using an FW-H integral surface that consisted of the landing gear and slip-wall mounting plane was found to generate excessive low-frequency far-field noise with a weakly compressible solver. The over-prediction with these FW-H surfaces, was eliminated by modelling the mounting plane with the exact dimensions and a no-slip boundary conditions.\",\"PeriodicalId\":429337,\"journal\":{\"name\":\"2018 AIAA/CEAS Aeroacoustics Conference\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 AIAA/CEAS Aeroacoustics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/6.2018-3468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 AIAA/CEAS Aeroacoustics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2018-3468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用弱可压缩壁型大涡模拟(WMLES)求解器,从机体噪声计算基准问题(BANC)出发,对4轮初级起落架(RLG)的气动流动和远场声学进行了预测。本研究的主要目的是测试(1)实验中使用的安装平面的计算建模方法和(2)固体FW-H表面的选择,以正确预测包括安装效果在内的远场噪声。采用弱可压缩和不可压缩两种求解方法对流场进行了模拟。采用滑移和无滑移边界条件对反射安装面进行了建模。使用不同固体FW-H表面的远场声学预测与实验测量进行了比较。使用不可压缩求解器,仅使用起落架作为积分曲面的预测中没有反射峰,但通过将起落架镜像添加到FW-H积分曲面中,可以部分恢复反射峰。对于弱可压缩解,利用起落架表面作为FWH积分面捕获这些反射峰。然而,由于包括了起落架的镜像,峰值被放大了。利用由起落架和滑壁安装平面组成的FW-H积分面,利用弱可压缩解算器发现了产生过多低频远场噪声的问题。通过采用精确的尺寸和无滑移边界条件对安装面进行建模,消除了对这些FW-H曲面的过度预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Numerical Study of Installation Effects of the Rudimentary Landing Gear Benchmark Problem
A weakly compressible, wall-modelled Large-Eddy Simulation (WMLES) solver is used to predict the aerodynamic flow and far-field acoustics of the 4-wheel Rudimentary Landing Gear (RLG) from the Benchmark Problems for Airframe Noise Computations (BANC). The main purposes of this study are to test (1) methods to computationally model the mounting plane that was used in the experiments and (2) choice of solid FW-H surfaces to correctly predict the far-field noise including the installation effects. Both weakly compressible and incompressible solvers were used to simulate the flowfield. The reflective mounting plane was modelled with slip and no-slip boundary conditions. Predictions of far-field acoustics using different solid FW-H surfaces are compared with experimental measurements. With an incompressible solver, reflection peaks were absent from the predictions using only the landing gear as an integral surface, but could be partially recovered by adding the landing gear’s mirrored image into the FW-H integral surface. For the weakly compressible solutions, these reflection peaks were captured by using the landing gear surface as the FWH integral surface. However, the peaks were amplified by including the landing gear’s mirrored image. Using an FW-H integral surface that consisted of the landing gear and slip-wall mounting plane was found to generate excessive low-frequency far-field noise with a weakly compressible solver. The over-prediction with these FW-H surfaces, was eliminated by modelling the mounting plane with the exact dimensions and a no-slip boundary conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Correction: The Dynamic Response of a Pinhole Microphone under Flows of Varying Shear Stress Correction: Effects of Free Stream Disturbance on the Development of the Compressible Flow around a Square Cylinder at Subsonic Mach Numbers Withdrawal: Experimental Investigation on Circular Cylinders with Metal Foam for Noise Reduction Withdrawal: Experimental investigation of the effect of slat deflection angle variation on aerodynamic noise characteristic Correction: Unsteady coherent surface-pressure fluctuations from time-averaged flow data with given two-point statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1