归一化高斯距离图切割图像分割

Chengcai Leng, W. Xu, I. Cheng, Z. Xiong, A. Basu
{"title":"归一化高斯距离图切割图像分割","authors":"Chengcai Leng, W. Xu, I. Cheng, Z. Xiong, A. Basu","doi":"10.1109/ISM.2015.36","DOIUrl":null,"url":null,"abstract":"This paper presents a novel, fast image segmentation method based on normalized Gaussian distance on nodes in conjunction with normalized graph cuts. We review the equivalence between kernel k-means and normalized cuts. Then we extend the framework of efficient spectral clustering and avoid choosing weights in the weighted graph cuts approach. Experiments on synthetic data sets and real-world images demonstrate that the proposed method is effective and accurate.","PeriodicalId":250353,"journal":{"name":"2015 IEEE International Symposium on Multimedia (ISM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Normalized Gaussian Distance Graph Cuts for Image Segmentation\",\"authors\":\"Chengcai Leng, W. Xu, I. Cheng, Z. Xiong, A. Basu\",\"doi\":\"10.1109/ISM.2015.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel, fast image segmentation method based on normalized Gaussian distance on nodes in conjunction with normalized graph cuts. We review the equivalence between kernel k-means and normalized cuts. Then we extend the framework of efficient spectral clustering and avoid choosing weights in the weighted graph cuts approach. Experiments on synthetic data sets and real-world images demonstrate that the proposed method is effective and accurate.\",\"PeriodicalId\":250353,\"journal\":{\"name\":\"2015 IEEE International Symposium on Multimedia (ISM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Multimedia (ISM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2015.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2015.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于节点归一化高斯距离并结合归一化图割的快速图像分割方法。我们回顾了核k-均值和归一化切之间的等价性。然后,我们扩展了高效谱聚类的框架,避免了在加权图切方法中选择权值。在合成数据集和真实图像上的实验证明了该方法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Normalized Gaussian Distance Graph Cuts for Image Segmentation
This paper presents a novel, fast image segmentation method based on normalized Gaussian distance on nodes in conjunction with normalized graph cuts. We review the equivalence between kernel k-means and normalized cuts. Then we extend the framework of efficient spectral clustering and avoid choosing weights in the weighted graph cuts approach. Experiments on synthetic data sets and real-world images demonstrate that the proposed method is effective and accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of the HEVC Coding Efficiency Advance Using 20 Scenes, ITU-T Rec. P.913 Compliant Subjective Methods, VQM, and PSNR Modelling Video Rate Evolution in Adaptive Bitrate Selection SDN Based QoE Optimization for HTTP-Based Adaptive Video Streaming Evaluation of Feature Detection in HDR Based Imaging Under Changes in Illumination Conditions Collaborative Rehabilitation Support System: A Comprehensive Solution for Everyday Rehab
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1