为发电应用建立资产监测和预测系统,采用具有成本效益的技术

P. Johnson
{"title":"为发电应用建立资产监测和预测系统,采用具有成本效益的技术","authors":"P. Johnson","doi":"10.1109/ICPHM.2013.6621446","DOIUrl":null,"url":null,"abstract":"Cost effective smart industrial data recorders promise to automate the collection of condition indicating sensor data. Automatic and pervasive data recording creates a wealth of condition assessment data that couples with operational history to yield a data store rich in opportunity for data driven prognostics as well as model development. Storing, managing, scoring, and otherwise utilizing this new found wealth of machinery condition indicators challenges the prognostics designer. Implementation of new and existing prognostic algorithms and techniques in an automated and useful way are the challenge of the day. While the application is not yet complete, this paper describes the motivation, the tools, the vision, and the current state of the power generation prognostics application with over 300 “balance of plant” machines under automatic surveillance.","PeriodicalId":178906,"journal":{"name":"2013 IEEE Conference on Prognostics and Health Management (PHM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Building asset monitoring and prognostics systems using cost effective technologies for power generation applications\",\"authors\":\"P. Johnson\",\"doi\":\"10.1109/ICPHM.2013.6621446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cost effective smart industrial data recorders promise to automate the collection of condition indicating sensor data. Automatic and pervasive data recording creates a wealth of condition assessment data that couples with operational history to yield a data store rich in opportunity for data driven prognostics as well as model development. Storing, managing, scoring, and otherwise utilizing this new found wealth of machinery condition indicators challenges the prognostics designer. Implementation of new and existing prognostic algorithms and techniques in an automated and useful way are the challenge of the day. While the application is not yet complete, this paper describes the motivation, the tools, the vision, and the current state of the power generation prognostics application with over 300 “balance of plant” machines under automatic surveillance.\",\"PeriodicalId\":178906,\"journal\":{\"name\":\"2013 IEEE Conference on Prognostics and Health Management (PHM)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Prognostics and Health Management (PHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2013.6621446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Prognostics and Health Management (PHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2013.6621446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

具有成本效益的智能工业数据记录仪有望自动收集状态指示传感器数据。自动和普遍的数据记录创建了大量的状态评估数据,这些数据与操作历史相结合,为数据驱动的预测和模型开发提供了丰富的数据存储机会。存储、管理、评分以及如何利用这些新发现的丰富的机器状态指标对预测设计者提出了挑战。以自动化和有用的方式实施新的和现有的预测算法和技术是当今的挑战。虽然应用尚未完成,但本文描述了300多台“电厂平衡”机器在自动监控下发电预测应用的动机、工具、愿景和现状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building asset monitoring and prognostics systems using cost effective technologies for power generation applications
Cost effective smart industrial data recorders promise to automate the collection of condition indicating sensor data. Automatic and pervasive data recording creates a wealth of condition assessment data that couples with operational history to yield a data store rich in opportunity for data driven prognostics as well as model development. Storing, managing, scoring, and otherwise utilizing this new found wealth of machinery condition indicators challenges the prognostics designer. Implementation of new and existing prognostic algorithms and techniques in an automated and useful way are the challenge of the day. While the application is not yet complete, this paper describes the motivation, the tools, the vision, and the current state of the power generation prognostics application with over 300 “balance of plant” machines under automatic surveillance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A decentralized fault accommodation scheme for nonlinear interconnected systems A circuit-centric approach to electronic system-level diagnostics and prognostics Predictive maintenance policy optimization by discrimination of marginally distinct signals Data mining based fault isolation with FMEA rank: A case study of APU fault identification Complete parametric estimation of the Weibull model with an optimized inspection interval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1