ExtracTable:从原始数据文件中提取表

Leonardo Hübscher, Lan Jiang, Felix Naumann
{"title":"ExtracTable:从原始数据文件中提取表","authors":"Leonardo Hübscher, Lan Jiang, Felix Naumann","doi":"10.18420/BTW2023-20","DOIUrl":null,"url":null,"abstract":": Raw data, especially in text-files, comes in many shapes and forms, often tailored toward human readability. They include preambles and footnotes, are formatted visually, and in general do not follow csv-guidelines. The ability to easily ingest such files into data systems opens up many opportunities for data analysis and processing. With ExtracTable, we present a system that can automatically ingest a large variety of raw data files, including text files and poorly structured csv-files by detecting row patterns and thus separating their values into coherent columns. We manually annotated 957 files of a wide variety containing 1208 tables. We show experimentally that ExtracTable can correctly parse 90% of all lines in structured files and 76% of all lines in files with a visual layout only, significantly outperforming state-of-the-art.","PeriodicalId":421643,"journal":{"name":"Datenbanksysteme für Business, Technologie und Web","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ExtracTable: Extracting Tables from Raw Data Files\",\"authors\":\"Leonardo Hübscher, Lan Jiang, Felix Naumann\",\"doi\":\"10.18420/BTW2023-20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Raw data, especially in text-files, comes in many shapes and forms, often tailored toward human readability. They include preambles and footnotes, are formatted visually, and in general do not follow csv-guidelines. The ability to easily ingest such files into data systems opens up many opportunities for data analysis and processing. With ExtracTable, we present a system that can automatically ingest a large variety of raw data files, including text files and poorly structured csv-files by detecting row patterns and thus separating their values into coherent columns. We manually annotated 957 files of a wide variety containing 1208 tables. We show experimentally that ExtracTable can correctly parse 90% of all lines in structured files and 76% of all lines in files with a visual layout only, significantly outperforming state-of-the-art.\",\"PeriodicalId\":421643,\"journal\":{\"name\":\"Datenbanksysteme für Business, Technologie und Web\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Datenbanksysteme für Business, Technologie und Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18420/BTW2023-20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Datenbanksysteme für Business, Technologie und Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18420/BTW2023-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

原始数据,特别是文本文件中的原始数据,有多种形状和形式,通常根据人类的可读性进行调整。它们包括前言和脚注,以视觉方式格式化,通常不遵循csv指南。将这些文件轻松地摄取到数据系统中的能力为数据分析和处理提供了许多机会。通过ExtracTable,我们提供了一个系统,它可以通过检测行模式并将它们的值分离到一致的列中,自动摄取大量的原始数据文件,包括文本文件和结构不良的csv文件。我们手动注释了957个文件,其中包含1208个表。我们通过实验证明,ExtracTable可以正确解析结构化文件中90%的所有行,以及仅使用视觉布局的文件中76%的所有行,显著优于目前的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ExtracTable: Extracting Tables from Raw Data Files
: Raw data, especially in text-files, comes in many shapes and forms, often tailored toward human readability. They include preambles and footnotes, are formatted visually, and in general do not follow csv-guidelines. The ability to easily ingest such files into data systems opens up many opportunities for data analysis and processing. With ExtracTable, we present a system that can automatically ingest a large variety of raw data files, including text files and poorly structured csv-files by detecting row patterns and thus separating their values into coherent columns. We manually annotated 957 files of a wide variety containing 1208 tables. We show experimentally that ExtracTable can correctly parse 90% of all lines in structured files and 76% of all lines in files with a visual layout only, significantly outperforming state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SportsTables: A new Corpus for Semantic Type Detection Accelerating Large Table Scan using Processing-In-Memory Technology The InsightsNet Climate Change Corpus (ICCC) On the State of German (Abstractive) Text Summarization The Easiest Way of Turning your Relational Database into a Blockchain - and the Cost of Doing So
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1