学习者的时间情感分析:公共与私人社交媒体传播渠道在女性技术转换课程

Jialin Yu, O. T. Aduragba, Zhongtian Sun, Sue Black, Craig Stewart, Lei Shi, A. Cristea
{"title":"学习者的时间情感分析:公共与私人社交媒体传播渠道在女性技术转换课程","authors":"Jialin Yu, O. T. Aduragba, Zhongtian Sun, Sue Black, Craig Stewart, Lei Shi, A. Cristea","doi":"10.1109/ICCSE49874.2020.9201631","DOIUrl":null,"url":null,"abstract":"Social media is ubiquitous, a continuous part of our daily lives; it offers new ways of communication. This is especially crucial in education, where various online systems make use of (perceived) public or private communication, as a means to support the learning process, often in real-time. However, not much research has been carried out in analysing and comparing such channels and the way participants use them. Thus, this paper analyses a course offering both public and private types of communication to its participants. Participants communicate via two social media channels (beyond traditional email etc.): Twitter (open to the public) and Microsoft Teams (for internal communication). In this paper, we specifically analyse the communication patterns of learners, focusing on the temporal analysis of their sentiments on the public versus the private platform. The comparison shows that, as possibly expected, there exist similarities between expressed sentiment in public and private channels. Interestingly however, the private platform is more likely to be used for negative utterances. It also shows that sentiment can be clearly connected to events in the course (e.g., the residentials increase both volume and positivity of comments). Finally, we propose new measures for sentiment analysis to better express the nature of change and speed of change of the sentiment in the two channels used by our learners during their learning process.","PeriodicalId":350703,"journal":{"name":"2020 15th International Conference on Computer Science & Education (ICCSE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Temporal Sentiment Analysis of Learners: Public Versus Private Social Media Communication Channels in a Women-in-Tech Conversion Course\",\"authors\":\"Jialin Yu, O. T. Aduragba, Zhongtian Sun, Sue Black, Craig Stewart, Lei Shi, A. Cristea\",\"doi\":\"10.1109/ICCSE49874.2020.9201631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media is ubiquitous, a continuous part of our daily lives; it offers new ways of communication. This is especially crucial in education, where various online systems make use of (perceived) public or private communication, as a means to support the learning process, often in real-time. However, not much research has been carried out in analysing and comparing such channels and the way participants use them. Thus, this paper analyses a course offering both public and private types of communication to its participants. Participants communicate via two social media channels (beyond traditional email etc.): Twitter (open to the public) and Microsoft Teams (for internal communication). In this paper, we specifically analyse the communication patterns of learners, focusing on the temporal analysis of their sentiments on the public versus the private platform. The comparison shows that, as possibly expected, there exist similarities between expressed sentiment in public and private channels. Interestingly however, the private platform is more likely to be used for negative utterances. It also shows that sentiment can be clearly connected to events in the course (e.g., the residentials increase both volume and positivity of comments). Finally, we propose new measures for sentiment analysis to better express the nature of change and speed of change of the sentiment in the two channels used by our learners during their learning process.\",\"PeriodicalId\":350703,\"journal\":{\"name\":\"2020 15th International Conference on Computer Science & Education (ICCSE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 15th International Conference on Computer Science & Education (ICCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSE49874.2020.9201631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE49874.2020.9201631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

社交媒体无处不在,是我们日常生活的一部分;它提供了新的交流方式。这在教育中尤其重要,因为各种在线系统利用(可感知的)公共或私人通信作为支持学习过程的手段,通常是实时的。然而,在分析和比较这些渠道以及参与者使用它们的方式方面,并没有进行太多的研究。因此,本文分析了一门为参与者提供公共和私人类型交流的课程。参与者通过两种社交媒体渠道进行交流(超越传统的电子邮件等):Twitter(对公众开放)和Microsoft Teams(用于内部交流)。在本文中,我们具体分析了学习者的交流模式,重点分析了他们在公共平台和私人平台上的情绪。比较表明,正如预期的那样,在公开和私人渠道中表达的情绪存在相似之处。然而,有趣的是,私人平台更有可能被用来发表负面言论。它还表明,情绪可以清楚地与课程中的事件联系起来(例如,住宅增加了评论的数量和积极性)。最后,我们提出了情感分析的新方法,以更好地表达学习者在学习过程中使用的两个渠道的情感变化的性质和变化的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temporal Sentiment Analysis of Learners: Public Versus Private Social Media Communication Channels in a Women-in-Tech Conversion Course
Social media is ubiquitous, a continuous part of our daily lives; it offers new ways of communication. This is especially crucial in education, where various online systems make use of (perceived) public or private communication, as a means to support the learning process, often in real-time. However, not much research has been carried out in analysing and comparing such channels and the way participants use them. Thus, this paper analyses a course offering both public and private types of communication to its participants. Participants communicate via two social media channels (beyond traditional email etc.): Twitter (open to the public) and Microsoft Teams (for internal communication). In this paper, we specifically analyse the communication patterns of learners, focusing on the temporal analysis of their sentiments on the public versus the private platform. The comparison shows that, as possibly expected, there exist similarities between expressed sentiment in public and private channels. Interestingly however, the private platform is more likely to be used for negative utterances. It also shows that sentiment can be clearly connected to events in the course (e.g., the residentials increase both volume and positivity of comments). Finally, we propose new measures for sentiment analysis to better express the nature of change and speed of change of the sentiment in the two channels used by our learners during their learning process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introduction of the new Operating System Kernel Internals for the New Metrics for the Performance Prediction on the Clouds Abnormal Event Detection in Video Based on Sparse Representation The Mechanism of Intelligent Technology Reforming Education Based on the Perspective of Embodied Cognitive Theory* Multi-integrated Reform for the Course of Data Structure Intelligent Distribution Platform of Network Shared Resources Based on Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1