基于树的基于密度的数据聚类混合遗传算法

Mozammel H. A. Khan
{"title":"基于树的基于密度的数据聚类混合遗传算法","authors":"Mozammel H. A. Khan","doi":"10.1109/ICSEC51790.2020.9375214","DOIUrl":null,"url":null,"abstract":"Data clustering algorithms partition a given set of data points into groups containing very similar data points. Representative-based and density-based algorithms are generally used for data clustering. These algorithms are heuristic algorithms and may stuck at a sub-optimal clustering. Crisp clustering problem is a combinatorial optimization problem. Genetic Algorithms generally perform better than heuristic algorithms for combinatorial optimization. In this work, we propose a hybrid Genetic Algorithm for density-based clustering. For this purpose, we represent a cluster using a forest of trees, where the nodes of the trees are the data points. We use a tree-based fitness function. Beside 1-point crossover, we use a deterministic improvement of offspring. We implement the proposed algorithm using C language and run on a personal computer. We experiment with five datasets from UCI Machine Learning Repository. The proposed algorithm outperforms for both low and high-dimensional datasets over existing algorithms, except for one high-dimensional dataset.","PeriodicalId":158728,"journal":{"name":"2020 24th International Computer Science and Engineering Conference (ICSEC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tree-Based Hybrid Genetic Algorithm for Density-Based Data Clustering\",\"authors\":\"Mozammel H. A. Khan\",\"doi\":\"10.1109/ICSEC51790.2020.9375214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data clustering algorithms partition a given set of data points into groups containing very similar data points. Representative-based and density-based algorithms are generally used for data clustering. These algorithms are heuristic algorithms and may stuck at a sub-optimal clustering. Crisp clustering problem is a combinatorial optimization problem. Genetic Algorithms generally perform better than heuristic algorithms for combinatorial optimization. In this work, we propose a hybrid Genetic Algorithm for density-based clustering. For this purpose, we represent a cluster using a forest of trees, where the nodes of the trees are the data points. We use a tree-based fitness function. Beside 1-point crossover, we use a deterministic improvement of offspring. We implement the proposed algorithm using C language and run on a personal computer. We experiment with five datasets from UCI Machine Learning Repository. The proposed algorithm outperforms for both low and high-dimensional datasets over existing algorithms, except for one high-dimensional dataset.\",\"PeriodicalId\":158728,\"journal\":{\"name\":\"2020 24th International Computer Science and Engineering Conference (ICSEC)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 24th International Computer Science and Engineering Conference (ICSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSEC51790.2020.9375214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 24th International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC51790.2020.9375214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

数据聚类算法将一组给定的数据点划分为包含非常相似的数据点的组。基于代表性和基于密度的算法通常用于数据聚类。这些算法是启发式算法,可能停留在次优聚类上。脆聚类问题是一个组合优化问题。遗传算法在组合优化中的表现通常优于启发式算法。在这项工作中,我们提出了一种基于密度的聚类混合遗传算法。为此,我们使用树的森林来表示集群,其中树的节点是数据点。我们使用基于树的适应度函数。除了1点交叉,我们使用后代的确定性改进。我们用C语言实现了该算法,并在个人计算机上运行。我们用UCI机器学习存储库中的五个数据集进行实验。除了一个高维数据集外,该算法在低维和高维数据集上都优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tree-Based Hybrid Genetic Algorithm for Density-Based Data Clustering
Data clustering algorithms partition a given set of data points into groups containing very similar data points. Representative-based and density-based algorithms are generally used for data clustering. These algorithms are heuristic algorithms and may stuck at a sub-optimal clustering. Crisp clustering problem is a combinatorial optimization problem. Genetic Algorithms generally perform better than heuristic algorithms for combinatorial optimization. In this work, we propose a hybrid Genetic Algorithm for density-based clustering. For this purpose, we represent a cluster using a forest of trees, where the nodes of the trees are the data points. We use a tree-based fitness function. Beside 1-point crossover, we use a deterministic improvement of offspring. We implement the proposed algorithm using C language and run on a personal computer. We experiment with five datasets from UCI Machine Learning Repository. The proposed algorithm outperforms for both low and high-dimensional datasets over existing algorithms, except for one high-dimensional dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiclass Classification of Astronomical Objects in the Galaxy M81 using Machine Learning Techniques A framework for cross-datasources agricultural research-to-impact analysis Abnormality Detection in Musculoskeletal Radiographs using EfficientNets Drowsiness Detection using Facial Emotions and Eye Aspect Ratios Approximating k-Connected m-Dominating Sets in Disk Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1