气体绝缘输电线路对通电过电压的影响

Xue Wenjia, Xiang Zutao
{"title":"气体绝缘输电线路对通电过电压的影响","authors":"Xue Wenjia, Xiang Zutao","doi":"10.1109/POWERCON.2018.8602353","DOIUrl":null,"url":null,"abstract":"Energization overvoltage is very important for security and stability of power grid, and it also provides reasonable reference for insulation coordination. This article proposes the influence of GIL on energization overvoltage. Parameter characteristics for GIL are presented and analyzed in detail, which are different from that of overhead line (OHL). Thus, with GIL applied to transmission system, the traditional methods for analysis of energization overvoltage could not be used. However, amplitude of energization overvoltage and voltage attenuation speed can be simply discussed only for a fully-GIL or a fully-OHL. Analysis on how the length, ratio and location of GIL effect the energization overvoltage, need to be obtained based on simulation results. The study includes various sensitivity analyses to find out the impact of transmission line parameters on overvoltage. By the statistical analysis, it has been discovered that energization overvoltage of a hybrid OHL-GIL circuit are lower than those of a fully-OHL circuit with the same transmission lengths. There is no evident changing regularity of overvoltage in different locations of GIL. The attenuation speed of a hybrid OHL-GIL circuit is lower than those of a fully-OHL and fully-GIL.","PeriodicalId":260947,"journal":{"name":"2018 International Conference on Power System Technology (POWERCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Gas-Insulated Transmission Line (GIL) on Energization Overvoltage\",\"authors\":\"Xue Wenjia, Xiang Zutao\",\"doi\":\"10.1109/POWERCON.2018.8602353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energization overvoltage is very important for security and stability of power grid, and it also provides reasonable reference for insulation coordination. This article proposes the influence of GIL on energization overvoltage. Parameter characteristics for GIL are presented and analyzed in detail, which are different from that of overhead line (OHL). Thus, with GIL applied to transmission system, the traditional methods for analysis of energization overvoltage could not be used. However, amplitude of energization overvoltage and voltage attenuation speed can be simply discussed only for a fully-GIL or a fully-OHL. Analysis on how the length, ratio and location of GIL effect the energization overvoltage, need to be obtained based on simulation results. The study includes various sensitivity analyses to find out the impact of transmission line parameters on overvoltage. By the statistical analysis, it has been discovered that energization overvoltage of a hybrid OHL-GIL circuit are lower than those of a fully-OHL circuit with the same transmission lengths. There is no evident changing regularity of overvoltage in different locations of GIL. The attenuation speed of a hybrid OHL-GIL circuit is lower than those of a fully-OHL and fully-GIL.\",\"PeriodicalId\":260947,\"journal\":{\"name\":\"2018 International Conference on Power System Technology (POWERCON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Power System Technology (POWERCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POWERCON.2018.8602353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Power System Technology (POWERCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERCON.2018.8602353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通电过电压对电网的安全稳定至关重要,也为电网的绝缘协调提供了合理的参考。本文提出了GIL对通电过电压的影响。详细介绍并分析了GIL与架空线(OHL)不同的参数特征。因此,当GIL应用于输电系统时,传统的供电过电压分析方法就无法使用了。但是,通电过电压的幅值和电压衰减速度只能简单地讨论为全gil或全ohl。根据仿真结果,分析GIL的长度、比例和位置对通电过电压的影响。该研究包括各种灵敏度分析,以找出输电线路参数对过电压的影响。通过统计分析发现,在相同传输长度下,混合OHL-GIL电路的通电过电压低于全ohl电路的通电过电压。过电压在GIL不同位置的变化规律不明显。混合OHL-GIL电路的衰减速度低于全ohl和全gil电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Gas-Insulated Transmission Line (GIL) on Energization Overvoltage
Energization overvoltage is very important for security and stability of power grid, and it also provides reasonable reference for insulation coordination. This article proposes the influence of GIL on energization overvoltage. Parameter characteristics for GIL are presented and analyzed in detail, which are different from that of overhead line (OHL). Thus, with GIL applied to transmission system, the traditional methods for analysis of energization overvoltage could not be used. However, amplitude of energization overvoltage and voltage attenuation speed can be simply discussed only for a fully-GIL or a fully-OHL. Analysis on how the length, ratio and location of GIL effect the energization overvoltage, need to be obtained based on simulation results. The study includes various sensitivity analyses to find out the impact of transmission line parameters on overvoltage. By the statistical analysis, it has been discovered that energization overvoltage of a hybrid OHL-GIL circuit are lower than those of a fully-OHL circuit with the same transmission lengths. There is no evident changing regularity of overvoltage in different locations of GIL. The attenuation speed of a hybrid OHL-GIL circuit is lower than those of a fully-OHL and fully-GIL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Consistency of damping torque and energy flow dissipation coefficient in oscillation stability analysis Optimization of grid-related protection setting for thermal power units in regional power grid including new energy Research on Analytic Method of Power System Frequency Response Characteristics under Large Power Disturbance A Transmission System Planning Method Considering Fuzzy Model of Load and Interval Model of Renewable Power Analysis of the Impact of Trading Pattern on PV Plant Investment in Spot Market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1