基于分形市场假设的经济风险评估

J. Blackledge, M. Rebow
{"title":"基于分形市场假设的经济风险评估","authors":"J. Blackledge, M. Rebow","doi":"10.1109/ICIMP.2010.28","DOIUrl":null,"url":null,"abstract":"This paper considers the Fractal Market Hypothesis (FMH) for assessing the risk(s) in developing a financial portfolio based on data that is available through the Internet from an increasing number of sources. Most financial risk management systems are still based on the Efficient Market Hypothesis which often fails due to the inaccuracies of the statistical models that underpin the hypothesis, in particular, that financial data are based on stationary Gaussian processes. The FMH considered in this paper assumes that financial data are non-stationary and statistically self-affine so that a risk analysis can, in principal, be applied at any time scale provided there is sufficient data to make the output of a FMH analysis statistically significant.","PeriodicalId":314947,"journal":{"name":"2010 Fifth International Conference on Internet Monitoring and Protection","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Economic Risk Assessment Using the Fractal Market Hypothesis\",\"authors\":\"J. Blackledge, M. Rebow\",\"doi\":\"10.1109/ICIMP.2010.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the Fractal Market Hypothesis (FMH) for assessing the risk(s) in developing a financial portfolio based on data that is available through the Internet from an increasing number of sources. Most financial risk management systems are still based on the Efficient Market Hypothesis which often fails due to the inaccuracies of the statistical models that underpin the hypothesis, in particular, that financial data are based on stationary Gaussian processes. The FMH considered in this paper assumes that financial data are non-stationary and statistically self-affine so that a risk analysis can, in principal, be applied at any time scale provided there is sufficient data to make the output of a FMH analysis statistically significant.\",\"PeriodicalId\":314947,\"journal\":{\"name\":\"2010 Fifth International Conference on Internet Monitoring and Protection\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Fifth International Conference on Internet Monitoring and Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIMP.2010.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fifth International Conference on Internet Monitoring and Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMP.2010.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文考虑了分形市场假设(FMH),用于评估基于互联网上越来越多的来源提供的数据开发金融投资组合的风险。大多数金融风险管理系统仍然基于有效市场假设,由于支撑该假设的统计模型的不准确性,特别是金融数据基于平稳高斯过程,该假设经常失败。本文中考虑的FMH假设金融数据是非平稳的,并且在统计上是自仿射的,因此,只要有足够的数据使FMH分析的输出在统计上显着,原则上可以在任何时间尺度上应用风险分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Economic Risk Assessment Using the Fractal Market Hypothesis
This paper considers the Fractal Market Hypothesis (FMH) for assessing the risk(s) in developing a financial portfolio based on data that is available through the Internet from an increasing number of sources. Most financial risk management systems are still based on the Efficient Market Hypothesis which often fails due to the inaccuracies of the statistical models that underpin the hypothesis, in particular, that financial data are based on stationary Gaussian processes. The FMH considered in this paper assumes that financial data are non-stationary and statistically self-affine so that a risk analysis can, in principal, be applied at any time scale provided there is sufficient data to make the output of a FMH analysis statistically significant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A-MAKE: An Efficient, Anonymous and Accountable Authentication Framework for WMNs FEMRA: Fuzzy Expert Model for Risk Assessment GoldPhish: Using Images for Content-Based Phishing Analysis Comparing Anomaly Detection Methods in Computer Networks Authentication of Biometric Features Using Texture Coding for ID Cards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1