Y. S. Yuen, S. Yamazaki, A. Baird, Takashi Nakamura, H. Yamasaki
{"title":"大堡礁巨大珊瑚Goniastrea aspera骨架中的硫酸盐还原细菌","authors":"Y. S. Yuen, S. Yamazaki, A. Baird, Takashi Nakamura, H. Yamasaki","doi":"10.3755/GALAXEA.15.154","DOIUrl":null,"url":null,"abstract":"Coral skeletons harbor diverse assemblages of endolithic microorganisms that often have a profound influence on the ecology and physiology of the coral host. While the cyanobacterial and eukaryotic microalgal components of these endolithic assemblages are well characterized, information on the other components remains scarce. Here, we characterize the endolithic microbial assemblages in the skeleton of the massive coral Goniastrea aspera in both oligotrohic and eutrophic environments. In addition to the green bands typically found in massive coral skeletons, multiple black bands were observed in skeletons from oligotrophic waters. Sequence analysis of the dsrB (dissimilatroy sulfite reductase beta-subunit) gene revealed that colonies with black bands harbor a diverse assemblage of sulfate-reducing bacteria (SRB). In contrast, SRB were not detected in skeletons from eutrophic waters. We conclude that increases in nutrients may have an important effect on the microbial assemblages residing within coral skeletons.","PeriodicalId":118057,"journal":{"name":"Galaxea, Journal of Coral Reef Studies","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Sulfate-reducing bacteria in the skeleton of the massive coral Goniastrea aspera from the great barrier reef\",\"authors\":\"Y. S. Yuen, S. Yamazaki, A. Baird, Takashi Nakamura, H. Yamasaki\",\"doi\":\"10.3755/GALAXEA.15.154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coral skeletons harbor diverse assemblages of endolithic microorganisms that often have a profound influence on the ecology and physiology of the coral host. While the cyanobacterial and eukaryotic microalgal components of these endolithic assemblages are well characterized, information on the other components remains scarce. Here, we characterize the endolithic microbial assemblages in the skeleton of the massive coral Goniastrea aspera in both oligotrohic and eutrophic environments. In addition to the green bands typically found in massive coral skeletons, multiple black bands were observed in skeletons from oligotrophic waters. Sequence analysis of the dsrB (dissimilatroy sulfite reductase beta-subunit) gene revealed that colonies with black bands harbor a diverse assemblage of sulfate-reducing bacteria (SRB). In contrast, SRB were not detected in skeletons from eutrophic waters. We conclude that increases in nutrients may have an important effect on the microbial assemblages residing within coral skeletons.\",\"PeriodicalId\":118057,\"journal\":{\"name\":\"Galaxea, Journal of Coral Reef Studies\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Galaxea, Journal of Coral Reef Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3755/GALAXEA.15.154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Galaxea, Journal of Coral Reef Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3755/GALAXEA.15.154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
珊瑚骨架中蕴藏着各种各样的内生微生物,这些微生物对珊瑚宿主的生态和生理有着深远的影响。虽然这些内生组合中的蓝藻和真核微藻成分已经很好地表征了,但关于其他成分的信息仍然很少。在这里,我们描述了在贫营养和富营养化环境下巨大珊瑚Goniastrea aspera骨架中的内生微生物组合。除了在大量珊瑚骨骼中通常发现的绿色带外,在营养不良水域的骨骼中还观察到多条黑色带。对亚硫酸盐还原酶β亚单位(dissimilatroy subite reduction ase beta-subunit)基因的序列分析表明,带有黑色带的菌落中含有多种硫酸盐还原菌(SRB)。相反,在富营养化水域的骨骼中未检测到SRB。我们得出结论,营养物质的增加可能对居住在珊瑚骨架内的微生物组合有重要影响。
Sulfate-reducing bacteria in the skeleton of the massive coral Goniastrea aspera from the great barrier reef
Coral skeletons harbor diverse assemblages of endolithic microorganisms that often have a profound influence on the ecology and physiology of the coral host. While the cyanobacterial and eukaryotic microalgal components of these endolithic assemblages are well characterized, information on the other components remains scarce. Here, we characterize the endolithic microbial assemblages in the skeleton of the massive coral Goniastrea aspera in both oligotrohic and eutrophic environments. In addition to the green bands typically found in massive coral skeletons, multiple black bands were observed in skeletons from oligotrophic waters. Sequence analysis of the dsrB (dissimilatroy sulfite reductase beta-subunit) gene revealed that colonies with black bands harbor a diverse assemblage of sulfate-reducing bacteria (SRB). In contrast, SRB were not detected in skeletons from eutrophic waters. We conclude that increases in nutrients may have an important effect on the microbial assemblages residing within coral skeletons.