Kubernetes上容器化HBase集群性能比较

Ta-Chun Lo, Chun-Ying Tao, Jyh-Biau Chang, C. Shieh
{"title":"Kubernetes上容器化HBase集群性能比较","authors":"Ta-Chun Lo, Chun-Ying Tao, Jyh-Biau Chang, C. Shieh","doi":"10.1109/RASSE54974.2022.9989814","DOIUrl":null,"url":null,"abstract":"The demand for large-volume database storage has become an essential issue with the rising trend of big data. Since the NoSQL database performs better than SQL databases when handling extensive data, many developers choose the NoSQL database as their first choice. Among all the NoSQL databases, HBase has become a popular choice due to its flexibility and high efficiency in the big data processing field. HBase is a column-oriented NoSQL database. It uses HDFS storage and is suitable for integrating with Hadoop ecosystem applications. However, deploying an HBase cluster on bare metal or virtual machines could be pretty complicated and time-consuming. The container technology can make HBase installation more convenient. Nevertheless, containerized HBase can be deployed in different ways. Deploying the HBase cluster in a proper approach can achieve higher performance. In this research, we propose two approaches, namely the Container-dedicated approach and the Container-shared approach, to containerize HBase on Kubernetes. Two benchmark tools are used to compare their performance under different workloads. According to experiment results, the Container-dedicated approach is suitable for writeheavy and read/write balanced applications. The container-shared approach shows a better performance in read-heavy applications. The test result will give future developers a reference when designing a containerized HBase cluster.","PeriodicalId":382440,"journal":{"name":"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Comparison of Containerized HBase Clusters on Kubernetes\",\"authors\":\"Ta-Chun Lo, Chun-Ying Tao, Jyh-Biau Chang, C. Shieh\",\"doi\":\"10.1109/RASSE54974.2022.9989814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for large-volume database storage has become an essential issue with the rising trend of big data. Since the NoSQL database performs better than SQL databases when handling extensive data, many developers choose the NoSQL database as their first choice. Among all the NoSQL databases, HBase has become a popular choice due to its flexibility and high efficiency in the big data processing field. HBase is a column-oriented NoSQL database. It uses HDFS storage and is suitable for integrating with Hadoop ecosystem applications. However, deploying an HBase cluster on bare metal or virtual machines could be pretty complicated and time-consuming. The container technology can make HBase installation more convenient. Nevertheless, containerized HBase can be deployed in different ways. Deploying the HBase cluster in a proper approach can achieve higher performance. In this research, we propose two approaches, namely the Container-dedicated approach and the Container-shared approach, to containerize HBase on Kubernetes. Two benchmark tools are used to compare their performance under different workloads. According to experiment results, the Container-dedicated approach is suitable for writeheavy and read/write balanced applications. The container-shared approach shows a better performance in read-heavy applications. The test result will give future developers a reference when designing a containerized HBase cluster.\",\"PeriodicalId\":382440,\"journal\":{\"name\":\"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RASSE54974.2022.9989814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RASSE54974.2022.9989814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着大数据的兴起,对大容量数据库存储的需求已经成为一个必不可少的问题。由于NoSQL数据库在处理大量数据时比SQL数据库性能更好,因此许多开发人员选择NoSQL数据库作为他们的首选。在众多NoSQL数据库中,HBase以其灵活性和高效性成为大数据处理领域的热门选择。HBase是一个面向列的NoSQL数据库。它使用HDFS存储,适合与Hadoop生态系统应用集成。然而,在裸机或虚拟机上部署HBase集群可能非常复杂且耗时。容器技术可以使HBase的安装更加方便。然而,容器化的HBase可以以不同的方式部署。合理部署HBase集群可以获得更高的性能。在本研究中,我们提出了两种方法,即容器专用方法和容器共享方法,以在Kubernetes上容器化HBase。使用两个基准测试工具来比较它们在不同工作负载下的性能。实验结果表明,容器专用方法适用于写量大、读写均衡的应用程序。容器共享方法在大量读取的应用程序中表现出更好的性能。测试结果可为未来开发人员在设计容器化HBase集群时提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Comparison of Containerized HBase Clusters on Kubernetes
The demand for large-volume database storage has become an essential issue with the rising trend of big data. Since the NoSQL database performs better than SQL databases when handling extensive data, many developers choose the NoSQL database as their first choice. Among all the NoSQL databases, HBase has become a popular choice due to its flexibility and high efficiency in the big data processing field. HBase is a column-oriented NoSQL database. It uses HDFS storage and is suitable for integrating with Hadoop ecosystem applications. However, deploying an HBase cluster on bare metal or virtual machines could be pretty complicated and time-consuming. The container technology can make HBase installation more convenient. Nevertheless, containerized HBase can be deployed in different ways. Deploying the HBase cluster in a proper approach can achieve higher performance. In this research, we propose two approaches, namely the Container-dedicated approach and the Container-shared approach, to containerize HBase on Kubernetes. Two benchmark tools are used to compare their performance under different workloads. According to experiment results, the Container-dedicated approach is suitable for writeheavy and read/write balanced applications. The container-shared approach shows a better performance in read-heavy applications. The test result will give future developers a reference when designing a containerized HBase cluster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design 4x1 Space-Time Conjugate Two-Path Full-Rate OFDM Systems YOLO-Based Deep-Learning Gaze Estimation Technology by Combining Geometric Feature and Appearance Based Technologies for Smart Advertising Displays Graph Neural Networks for HD EMG-based Movement Intention Recognition: An Initial Investigation Bert Based Chinese Sentiment Analysis for Automatic Censoring of Dynamic Electronic Scroll An Image Feature Points Assisted Point Cloud Matching Scheme in Odometry Estimation for SLAM Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1