{"title":"同步开关:分布式深度学习的混合参数同步","authors":"Shijian Li, Oren Mangoubi, Lijie Xu, Tian Guo","doi":"10.1109/ICDCS51616.2021.00057","DOIUrl":null,"url":null,"abstract":"Stochastic Gradient Descent (SGD) has become the de facto way to train deep neural networks in distributed clusters. A critical factor in determining the training throughput and model accuracy is the choice of the parameter synchronization protocol. For example, while Bulk Synchronous Parallel (BSP) often achieves better converged accuracy, the corresponding training throughput can be negatively impacted by stragglers. In contrast, Asynchronous Parallel (ASP) can have higher throughput, but its convergence and accuracy can be impacted by stale gradients. To improve the performance of synchronization protocol, recent work often focuses on designing new protocols with a heavy reliance on hard-to-tune hyper-parameters. In this paper, we design a hybrid synchronization approach that exploits the benefits of both BSP and ASP, i.e., reducing training time while simultaneously maintaining the converged accuracy. Based on extensive empirical profiling, we devise a collection of adaptive policies that determine how and when to switch between synchronization protocols. Our policies include both offline ones that target recurring jobs and online ones for handling transient stragglers. We implement the proposed policies in a prototype system, called Sync-Switch, on top of TensorFlow, and evaluate the training performance with popular deep learning models and datasets. Our experiments show that Sync-Switch can achieve ASP level training speedup while maintaining similar converged accuracy when comparing to BSP. Moreover, Sync-Switch's elastic-based policy can adequately mitigate the impact from transient stragglers.","PeriodicalId":222376,"journal":{"name":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Sync-Switch: Hybrid Parameter Synchronization for Distributed Deep Learning\",\"authors\":\"Shijian Li, Oren Mangoubi, Lijie Xu, Tian Guo\",\"doi\":\"10.1109/ICDCS51616.2021.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic Gradient Descent (SGD) has become the de facto way to train deep neural networks in distributed clusters. A critical factor in determining the training throughput and model accuracy is the choice of the parameter synchronization protocol. For example, while Bulk Synchronous Parallel (BSP) often achieves better converged accuracy, the corresponding training throughput can be negatively impacted by stragglers. In contrast, Asynchronous Parallel (ASP) can have higher throughput, but its convergence and accuracy can be impacted by stale gradients. To improve the performance of synchronization protocol, recent work often focuses on designing new protocols with a heavy reliance on hard-to-tune hyper-parameters. In this paper, we design a hybrid synchronization approach that exploits the benefits of both BSP and ASP, i.e., reducing training time while simultaneously maintaining the converged accuracy. Based on extensive empirical profiling, we devise a collection of adaptive policies that determine how and when to switch between synchronization protocols. Our policies include both offline ones that target recurring jobs and online ones for handling transient stragglers. We implement the proposed policies in a prototype system, called Sync-Switch, on top of TensorFlow, and evaluate the training performance with popular deep learning models and datasets. Our experiments show that Sync-Switch can achieve ASP level training speedup while maintaining similar converged accuracy when comparing to BSP. Moreover, Sync-Switch's elastic-based policy can adequately mitigate the impact from transient stragglers.\",\"PeriodicalId\":222376,\"journal\":{\"name\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS51616.2021.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS51616.2021.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sync-Switch: Hybrid Parameter Synchronization for Distributed Deep Learning
Stochastic Gradient Descent (SGD) has become the de facto way to train deep neural networks in distributed clusters. A critical factor in determining the training throughput and model accuracy is the choice of the parameter synchronization protocol. For example, while Bulk Synchronous Parallel (BSP) often achieves better converged accuracy, the corresponding training throughput can be negatively impacted by stragglers. In contrast, Asynchronous Parallel (ASP) can have higher throughput, but its convergence and accuracy can be impacted by stale gradients. To improve the performance of synchronization protocol, recent work often focuses on designing new protocols with a heavy reliance on hard-to-tune hyper-parameters. In this paper, we design a hybrid synchronization approach that exploits the benefits of both BSP and ASP, i.e., reducing training time while simultaneously maintaining the converged accuracy. Based on extensive empirical profiling, we devise a collection of adaptive policies that determine how and when to switch between synchronization protocols. Our policies include both offline ones that target recurring jobs and online ones for handling transient stragglers. We implement the proposed policies in a prototype system, called Sync-Switch, on top of TensorFlow, and evaluate the training performance with popular deep learning models and datasets. Our experiments show that Sync-Switch can achieve ASP level training speedup while maintaining similar converged accuracy when comparing to BSP. Moreover, Sync-Switch's elastic-based policy can adequately mitigate the impact from transient stragglers.