自动词汇发音生成和更新

Ghinwa F. Choueiter, S. Seneff, James R. Glass
{"title":"自动词汇发音生成和更新","authors":"Ghinwa F. Choueiter, S. Seneff, James R. Glass","doi":"10.1109/ASRU.2007.4430113","DOIUrl":null,"url":null,"abstract":"Most automatic speech recognizers use a dictionary that maps words to one or more canonical pronunciations. Such entries are typically hand-written by lexical experts. In this research, we investigate a new approach for automatically generating lexical pronunciations using a linguistically motivated subword model, and refining the pronunciations with spoken examples. The approach is evaluated on an isolated word recognition task with a 2 k lexicon of restaurant and street names. A letter-to-sound model is first used to generate seed baseforms for the lexicon. Then spoken utterances of words in the lexicon are presented to a subword recognizer and the top hypotheses are used to update the lexical base-forms. The spelling of each word is also used to constrain the subword search space and generate spelling-constrained baseforms. The results obtained are quite encouraging and indicate that our approach can be successfully used to learn valid pronunciations of new words.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automatic lexical pronunciations generation and update\",\"authors\":\"Ghinwa F. Choueiter, S. Seneff, James R. Glass\",\"doi\":\"10.1109/ASRU.2007.4430113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most automatic speech recognizers use a dictionary that maps words to one or more canonical pronunciations. Such entries are typically hand-written by lexical experts. In this research, we investigate a new approach for automatically generating lexical pronunciations using a linguistically motivated subword model, and refining the pronunciations with spoken examples. The approach is evaluated on an isolated word recognition task with a 2 k lexicon of restaurant and street names. A letter-to-sound model is first used to generate seed baseforms for the lexicon. Then spoken utterances of words in the lexicon are presented to a subword recognizer and the top hypotheses are used to update the lexical base-forms. The spelling of each word is also used to constrain the subword search space and generate spelling-constrained baseforms. The results obtained are quite encouraging and indicate that our approach can be successfully used to learn valid pronunciations of new words.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

大多数自动语音识别器使用字典将单词映射到一个或多个标准发音。这些条目通常是由词汇专家手写的。在这项研究中,我们研究了一种使用语言动机子词模型自动生成词汇发音的新方法,并通过口语例子来改进发音。该方法在一个孤立的单词识别任务上进行了评估,该任务使用了一个2k的餐馆和街道名称词典。首先使用字母到声音模型为词典生成种子基表单。然后将词汇中的话语呈现给子词识别器,并使用最上面的假设来更新词汇基本形式。每个单词的拼写还用于约束子单词搜索空间并生成拼写约束的基形式。实验结果令人鼓舞,表明我们的方法可以成功地用于新单词的有效发音学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic lexical pronunciations generation and update
Most automatic speech recognizers use a dictionary that maps words to one or more canonical pronunciations. Such entries are typically hand-written by lexical experts. In this research, we investigate a new approach for automatically generating lexical pronunciations using a linguistically motivated subword model, and refining the pronunciations with spoken examples. The approach is evaluated on an isolated word recognition task with a 2 k lexicon of restaurant and street names. A letter-to-sound model is first used to generate seed baseforms for the lexicon. Then spoken utterances of words in the lexicon are presented to a subword recognizer and the top hypotheses are used to update the lexical base-forms. The spelling of each word is also used to constrain the subword search space and generate spelling-constrained baseforms. The results obtained are quite encouraging and indicate that our approach can be successfully used to learn valid pronunciations of new words.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive linear transforms for noise robust speech recognition Development of a phonetic system for large vocabulary Arabic speech recognition Error simulation for training statistical dialogue systems An enhanced minimum classification error learning framework for balancing insertion, deletion and substitution errors Monolingual and crosslingual comparison of tandem features derived from articulatory and phone MLPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1