{"title":"并行计算多维聚合","authors":"W. Liang, M. Orlowska","doi":"10.1109/ICPADS.1998.741024","DOIUrl":null,"url":null,"abstract":"Computing multiple related group-by aggregates is one of the core operations of online analytical processing (OLAP) applications. This kind of computation involves a huge volume of data operations (megabytes or treabytes). The response time for such applications is crucial, so, using parallel processing techniques to handle such computation is inevitable. We present several parallel algorithms for computing a collection of group-by aggregates based on a multiprocessor system with shared disks. We focus on a special case of the aggregation problem-\"Cube\" operator which computes group-by aggregates over all possible combinations of a list of attributes. The proposed algorithms introduce a novel processor scheduling policy and a non-trivial decomposition approach for the problem in the parallel environment. Particularly, the hybrid algorithm has the best performance potential among the four proposed algorithms. All the proposed algorithms are scalable.","PeriodicalId":226947,"journal":{"name":"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Computing multidimensional aggregates in parallel\",\"authors\":\"W. Liang, M. Orlowska\",\"doi\":\"10.1109/ICPADS.1998.741024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing multiple related group-by aggregates is one of the core operations of online analytical processing (OLAP) applications. This kind of computation involves a huge volume of data operations (megabytes or treabytes). The response time for such applications is crucial, so, using parallel processing techniques to handle such computation is inevitable. We present several parallel algorithms for computing a collection of group-by aggregates based on a multiprocessor system with shared disks. We focus on a special case of the aggregation problem-\\\"Cube\\\" operator which computes group-by aggregates over all possible combinations of a list of attributes. The proposed algorithms introduce a novel processor scheduling policy and a non-trivial decomposition approach for the problem in the parallel environment. Particularly, the hybrid algorithm has the best performance potential among the four proposed algorithms. All the proposed algorithms are scalable.\",\"PeriodicalId\":226947,\"journal\":{\"name\":\"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS.1998.741024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.1998.741024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

计算多个相关的分组聚合是在线分析处理(OLAP)应用程序的核心操作之一。这种计算涉及大量的数据操作(兆字节或兆字节)。此类应用程序的响应时间至关重要,因此,使用并行处理技术来处理此类计算是不可避免的。提出了几种基于共享磁盘的多处理器系统的分组聚合计算并行算法。我们关注聚合问题的一个特殊情况——“Cube”运算符,它计算属性列表的所有可能组合上的按组聚合。该算法引入了一种新的处理器调度策略和非平凡分解方法来解决并行环境下的问题。其中,混合算法在四种算法中具有最佳的性能潜力。所有提出的算法都是可扩展的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computing multidimensional aggregates in parallel
Computing multiple related group-by aggregates is one of the core operations of online analytical processing (OLAP) applications. This kind of computation involves a huge volume of data operations (megabytes or treabytes). The response time for such applications is crucial, so, using parallel processing techniques to handle such computation is inevitable. We present several parallel algorithms for computing a collection of group-by aggregates based on a multiprocessor system with shared disks. We focus on a special case of the aggregation problem-"Cube" operator which computes group-by aggregates over all possible combinations of a list of attributes. The proposed algorithms introduce a novel processor scheduling policy and a non-trivial decomposition approach for the problem in the parallel environment. Particularly, the hybrid algorithm has the best performance potential among the four proposed algorithms. All the proposed algorithms are scalable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Object replication using version vector An efficient thread architecture for a distributed shared memory on symmetric multiprocessor clusters A new replication strategy for unforeseeable disconnection under agent-based mobile computing system On reconfiguring query execution plans in distributed object-relational DBMS Reusing MS-Windows software applications under CORBA environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1