H-Saber:设计快速高效后量子加密硬件加速器的fpga优化版本

Andrea Guerrieri, Gabriel Da Silva Marques, F. Regazzoni, A. Upegui
{"title":"H-Saber:设计快速高效后量子加密硬件加速器的fpga优化版本","authors":"Andrea Guerrieri, Gabriel Da Silva Marques, F. Regazzoni, A. Upegui","doi":"10.1109/ISQED57927.2023.10129356","DOIUrl":null,"url":null,"abstract":"With the performance promises of quantum computers, standard encryption algorithms can be defeated. For this reason, a set of new quantum-resistant algorithms have been proposed and submitted for a standardization contest initiated by NIST. While the submission requirement was ANSI C for the reference implementation, NIST encouraged providing software implementations optimized for different target platforms, such as high-performance CPUs, embedded microcontrollers, and FPGAs. Yet, none of the algorithms submitted any FPGA-optimized code, due to the large and expensive development time required for coding at RTL. High-Level synthesis (HLS) covers the gap by creating automatically hardware code for FPGA out of C/C++. However, the quality of results is suboptimal due to the limitation imposed by the inadequacy of source code for HLS. In this paper, we propose a version of Saber’s code optimized for FPGA targets. We show how we detected and improved the performance of the reference code, achieving competitive results compared to the hand-made RTL-based designs.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"68 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"H-Saber: An FPGA-Optimized Version for Designing Fast and Efficient Post-Quantum Cryptography Hardware Accelerators\",\"authors\":\"Andrea Guerrieri, Gabriel Da Silva Marques, F. Regazzoni, A. Upegui\",\"doi\":\"10.1109/ISQED57927.2023.10129356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the performance promises of quantum computers, standard encryption algorithms can be defeated. For this reason, a set of new quantum-resistant algorithms have been proposed and submitted for a standardization contest initiated by NIST. While the submission requirement was ANSI C for the reference implementation, NIST encouraged providing software implementations optimized for different target platforms, such as high-performance CPUs, embedded microcontrollers, and FPGAs. Yet, none of the algorithms submitted any FPGA-optimized code, due to the large and expensive development time required for coding at RTL. High-Level synthesis (HLS) covers the gap by creating automatically hardware code for FPGA out of C/C++. However, the quality of results is suboptimal due to the limitation imposed by the inadequacy of source code for HLS. In this paper, we propose a version of Saber’s code optimized for FPGA targets. We show how we detected and improved the performance of the reference code, achieving competitive results compared to the hand-made RTL-based designs.\",\"PeriodicalId\":315053,\"journal\":{\"name\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"68 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED57927.2023.10129356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 24th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED57927.2023.10129356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于量子计算机的性能承诺,标准的加密算法可能会被击败。因此,一组新的抗量子算法被提出并提交给NIST发起的标准化竞赛。虽然提交的要求是参考实现的ANSI C,但NIST鼓励提供针对不同目标平台优化的软件实现,例如高性能cpu、嵌入式微控制器和fpga。然而,由于在RTL编码所需的大量且昂贵的开发时间,这些算法都没有提交任何fpga优化代码。高级综合(High-Level synthesis, HLS)通过用C/ c++为FPGA自动创建硬件代码来弥补这一差距。然而,由于HLS源代码的不足所施加的限制,结果的质量不是最优的。在本文中,我们提出了一个针对FPGA目标优化的Saber代码版本。我们展示了如何检测和改进参考代码的性能,与手工制作的基于rtl的设计相比,取得了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
H-Saber: An FPGA-Optimized Version for Designing Fast and Efficient Post-Quantum Cryptography Hardware Accelerators
With the performance promises of quantum computers, standard encryption algorithms can be defeated. For this reason, a set of new quantum-resistant algorithms have been proposed and submitted for a standardization contest initiated by NIST. While the submission requirement was ANSI C for the reference implementation, NIST encouraged providing software implementations optimized for different target platforms, such as high-performance CPUs, embedded microcontrollers, and FPGAs. Yet, none of the algorithms submitted any FPGA-optimized code, due to the large and expensive development time required for coding at RTL. High-Level synthesis (HLS) covers the gap by creating automatically hardware code for FPGA out of C/C++. However, the quality of results is suboptimal due to the limitation imposed by the inadequacy of source code for HLS. In this paper, we propose a version of Saber’s code optimized for FPGA targets. We show how we detected and improved the performance of the reference code, achieving competitive results compared to the hand-made RTL-based designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metal Inter-layer Via Keep-out-zone in M3D IC: A Critical Process-aware Design Consideration HD2FPGA: Automated Framework for Accelerating Hyperdimensional Computing on FPGAs A Novel Stochastic LSTM Model Inspired by Quantum Machine Learning DC-Model: A New Method for Assisting the Analog Circuit Optimization Polynomial Formal Verification of a Processor: A RISC-V Case Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1