{"title":"基于跨模态变换的弱监督深度图像哈希","authors":"Ching-Ching Yang, W. Chu, S. Dubey","doi":"10.23919/MVA57639.2023.10216160","DOIUrl":null,"url":null,"abstract":"Weakly-supervised image hashing emerges recently because web images associated with contextual text or tags are abundant. Text information weakly-related to images can be utilized to guide the learning of a deep hashing network. In this paper, we propose Weakly-supervised deep Hashing based on Cross-Modal Transformer (WHCMT). First, cross-scale attention between image patches is discovered to form more effective visual representations. A baseline transformer is also adopted to find self-attention of tags and form tag representations. Second, the cross-modal attention between images and tags is discovered by the proposed cross-modal transformer. Effective hash codes are then generated by embedding layers. WHCMT is tested on semantic image retrieval, and we show new state-of-the-art results can be obtained for the MIRFLICKR-25K dataset and NUS-WIDE dataset.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakly-Supervised Deep Image Hashing based on Cross-Modal Transformer\",\"authors\":\"Ching-Ching Yang, W. Chu, S. Dubey\",\"doi\":\"10.23919/MVA57639.2023.10216160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weakly-supervised image hashing emerges recently because web images associated with contextual text or tags are abundant. Text information weakly-related to images can be utilized to guide the learning of a deep hashing network. In this paper, we propose Weakly-supervised deep Hashing based on Cross-Modal Transformer (WHCMT). First, cross-scale attention between image patches is discovered to form more effective visual representations. A baseline transformer is also adopted to find self-attention of tags and form tag representations. Second, the cross-modal attention between images and tags is discovered by the proposed cross-modal transformer. Effective hash codes are then generated by embedding layers. WHCMT is tested on semantic image retrieval, and we show new state-of-the-art results can be obtained for the MIRFLICKR-25K dataset and NUS-WIDE dataset.\",\"PeriodicalId\":338734,\"journal\":{\"name\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA57639.2023.10216160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10216160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weakly-Supervised Deep Image Hashing based on Cross-Modal Transformer
Weakly-supervised image hashing emerges recently because web images associated with contextual text or tags are abundant. Text information weakly-related to images can be utilized to guide the learning of a deep hashing network. In this paper, we propose Weakly-supervised deep Hashing based on Cross-Modal Transformer (WHCMT). First, cross-scale attention between image patches is discovered to form more effective visual representations. A baseline transformer is also adopted to find self-attention of tags and form tag representations. Second, the cross-modal attention between images and tags is discovered by the proposed cross-modal transformer. Effective hash codes are then generated by embedding layers. WHCMT is tested on semantic image retrieval, and we show new state-of-the-art results can be obtained for the MIRFLICKR-25K dataset and NUS-WIDE dataset.