基于圆锥截面函数神经网络的肌电信号分类

Lale Özyilmaz, T. Yıldırım, H. Seker
{"title":"基于圆锥截面函数神经网络的肌电信号分类","authors":"Lale Özyilmaz, T. Yıldırım, H. Seker","doi":"10.1109/IJCNN.1999.836251","DOIUrl":null,"url":null,"abstract":"The aim of this work is to classify EMG signals using a new neural network architecture to control multifunction prostheses. The control of these prostheses can be made using myoelectric signals taken from a single pair of surface electrodes. This case has been demonstrated specifically for use by above elbow amputees. The ability to separate different muscle contraction characters depends on myoelectric signal information. Therefore, the classification of these signals is investigated. The proposed neural network algorithm here makes the user learn better and faster.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"EMG signal classification using conic section function neural networks\",\"authors\":\"Lale Özyilmaz, T. Yıldırım, H. Seker\",\"doi\":\"10.1109/IJCNN.1999.836251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to classify EMG signals using a new neural network architecture to control multifunction prostheses. The control of these prostheses can be made using myoelectric signals taken from a single pair of surface electrodes. This case has been demonstrated specifically for use by above elbow amputees. The ability to separate different muscle contraction characters depends on myoelectric signal information. Therefore, the classification of these signals is investigated. The proposed neural network algorithm here makes the user learn better and faster.\",\"PeriodicalId\":157719,\"journal\":{\"name\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1999.836251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.836251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

这项工作的目的是利用一种新的神经网络结构对肌电信号进行分类,以控制多功能假肢。这些假体的控制可以通过从一对表面电极获取的肌电信号来实现。这种情况已被证明是专门用于以上肘部截肢者。分离不同肌肉收缩特征的能力依赖于肌电信号信息。因此,对这些信号的分类进行了研究。本文提出的神经网络算法可以使用户更好更快地学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EMG signal classification using conic section function neural networks
The aim of this work is to classify EMG signals using a new neural network architecture to control multifunction prostheses. The control of these prostheses can be made using myoelectric signals taken from a single pair of surface electrodes. This case has been demonstrated specifically for use by above elbow amputees. The ability to separate different muscle contraction characters depends on myoelectric signal information. Therefore, the classification of these signals is investigated. The proposed neural network algorithm here makes the user learn better and faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting human cortical connectivity for language areas using the Conel database Identification of nonlinear dynamic systems by using probabilistic universal learning networks Knowledge processing system using chaotic associative memory Computer-aided diagnosis of breast cancer using artificial neural networks: comparison of backpropagation and genetic algorithms A versatile framework for labelling imagery with a large number of classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1