{"title":"一种无监督的实时尖峰排序方法","authors":"Gerold Bausch, H. Beikirch","doi":"10.1109/IDAACS.2011.6072824","DOIUrl":null,"url":null,"abstract":"A large amount of neurophysiological research is based on the study of biological neural populations. The data is gathered from extra-cellular recordings with multi-electrode arrays (MEAs). The signal is a stream containing an unknown number of neural sources superpositioned with non-stationary noise components. In order to analyze the recorded spike trains, a prior separation into its individual components is required. The increasing number of sensors on a MEA surface demand an automatic spike sorting procedure. In this article the proposed spike sorting method replaces the manual steps with artificial neural networks to enable an unsupervised separation of mixed signal components. Furthermore the artificial neural network based feature extraction allows realtime processing and ensures high flexbibility and adaptivity for unknown signals with non-stationary noise components.","PeriodicalId":106306,"journal":{"name":"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An unsupervised method for realtime spike sorting\",\"authors\":\"Gerold Bausch, H. Beikirch\",\"doi\":\"10.1109/IDAACS.2011.6072824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large amount of neurophysiological research is based on the study of biological neural populations. The data is gathered from extra-cellular recordings with multi-electrode arrays (MEAs). The signal is a stream containing an unknown number of neural sources superpositioned with non-stationary noise components. In order to analyze the recorded spike trains, a prior separation into its individual components is required. The increasing number of sensors on a MEA surface demand an automatic spike sorting procedure. In this article the proposed spike sorting method replaces the manual steps with artificial neural networks to enable an unsupervised separation of mixed signal components. Furthermore the artificial neural network based feature extraction allows realtime processing and ensures high flexbibility and adaptivity for unknown signals with non-stationary noise components.\",\"PeriodicalId\":106306,\"journal\":{\"name\":\"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAACS.2011.6072824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2011.6072824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大量的神经生理学研究是基于对生物神经群的研究。数据是从多电极阵列(MEAs)的细胞外记录中收集的。信号是一个包含未知数量的神经源与非平稳噪声分量叠加的流。为了分析记录的尖峰序列,需要事先将其分离为单个组件。MEA表面上越来越多的传感器需要一个自动尖峰分类程序。本文提出的尖峰分类方法用人工神经网络代替人工步骤,实现混合信号成分的无监督分离。此外,基于人工神经网络的特征提取允许实时处理,并确保具有非平稳噪声成分的未知信号的高灵活性和自适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An unsupervised method for realtime spike sorting
A large amount of neurophysiological research is based on the study of biological neural populations. The data is gathered from extra-cellular recordings with multi-electrode arrays (MEAs). The signal is a stream containing an unknown number of neural sources superpositioned with non-stationary noise components. In order to analyze the recorded spike trains, a prior separation into its individual components is required. The increasing number of sensors on a MEA surface demand an automatic spike sorting procedure. In this article the proposed spike sorting method replaces the manual steps with artificial neural networks to enable an unsupervised separation of mixed signal components. Furthermore the artificial neural network based feature extraction allows realtime processing and ensures high flexbibility and adaptivity for unknown signals with non-stationary noise components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated measurement system based on digital intertial sensors for the study of human body movement Assessment of probabilistic parameters of alarm security detectors taking uncertain noise into account Special areas detection on agricultural fields images using evaluations of local brightness variability Net Present Value (NPV) as a tool supporting effective project management Photoplethysmography detection by smartphone's videocamera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1