基于参数优化k均值聚类的隐马尔可夫手写识别模型

Weijie Su, Xin Jin
{"title":"基于参数优化k均值聚类的隐马尔可夫手写识别模型","authors":"Weijie Su, Xin Jin","doi":"10.1109/ICICIS.2011.113","DOIUrl":null,"url":null,"abstract":"Handwriting recognition is a main topic of Optical Character Recognition (OCR), which has a very wide application area. Hidden Markov model is a popular model for handwriting recognition because of its effectiveness and robustness. In this paper, we propose a hidden Markov model with parameter-optimized k-means clustering for handwriting recognition. We explore two deep features of the images of characters, thus significantly boosting the effectiveness of k-means clustering. The experiments show that our model largely increases the average accuracy of HMM with k-means clustering to 83.5% when the number of clusters is 3000.","PeriodicalId":255291,"journal":{"name":"2011 International Conference on Internet Computing and Information Services","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hidden Markov Model with Parameter-Optimized K-Means Clustering for Handwriting Recognition\",\"authors\":\"Weijie Su, Xin Jin\",\"doi\":\"10.1109/ICICIS.2011.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Handwriting recognition is a main topic of Optical Character Recognition (OCR), which has a very wide application area. Hidden Markov model is a popular model for handwriting recognition because of its effectiveness and robustness. In this paper, we propose a hidden Markov model with parameter-optimized k-means clustering for handwriting recognition. We explore two deep features of the images of characters, thus significantly boosting the effectiveness of k-means clustering. The experiments show that our model largely increases the average accuracy of HMM with k-means clustering to 83.5% when the number of clusters is 3000.\",\"PeriodicalId\":255291,\"journal\":{\"name\":\"2011 International Conference on Internet Computing and Information Services\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Internet Computing and Information Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIS.2011.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Internet Computing and Information Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIS.2011.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

手写识别是光学字符识别(OCR)的一个重要课题,具有非常广泛的应用领域。隐马尔可夫模型由于其有效性和鲁棒性而成为手写识别的常用模型。本文提出了一种参数优化的k均值聚类隐马尔可夫模型用于手写识别。我们探索了人物图像的两个深层特征,从而显著提高了k-means聚类的有效性。实验表明,当聚类数量为3000时,我们的模型将k-means聚类的HMM平均准确率大大提高到83.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hidden Markov Model with Parameter-Optimized K-Means Clustering for Handwriting Recognition
Handwriting recognition is a main topic of Optical Character Recognition (OCR), which has a very wide application area. Hidden Markov model is a popular model for handwriting recognition because of its effectiveness and robustness. In this paper, we propose a hidden Markov model with parameter-optimized k-means clustering for handwriting recognition. We explore two deep features of the images of characters, thus significantly boosting the effectiveness of k-means clustering. The experiments show that our model largely increases the average accuracy of HMM with k-means clustering to 83.5% when the number of clusters is 3000.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Telephone Clients Management System with Short Messages The Analysis on the Function of Risk Management in Construction Enterprises Development Test Case Prioritization Technique Based on Genetic Algorithm A Model to Create Graeco Latin Square Using Genetic Algorithm Perceptual System of the Dangerous Goods in Transit Escort Based on WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1