点云帧间刚体配准的不同策略比较

Fernando A. A. Yamada, M. Vieira, G. Giraldi, A. Apolinario
{"title":"点云帧间刚体配准的不同策略比较","authors":"Fernando A. A. Yamada, M. Vieira, G. Giraldi, A. Apolinario","doi":"10.1109/SVR.2017.20","DOIUrl":null,"url":null,"abstract":"Pairwise surface rigid registration aims to find the rigid transformation that best register two surfaces represented by point clouds. This work presents a comparison between seven algorithms, with different strategies to tackle rigid registration tasks. We focus on the frame-to-frame problem by using both point clouds and a RGB-D video stream in the experimental results. The former, is considered under different viewpoints, with the addition of outliers and noise. Once the ground truth rotation is provided, we discuss four different metrics to measure the rotation error in this case. The video sequence with depth information is segmented to get the target object. Next, the registration algorithms are applied and the average root mean squared error is computed. Since the ground truth is not available in this case, we develop a superposition strategy to visually check performance of the algorithms. Besides, we analyse the robustness of the techniques against spatial and temporal sampling rates.","PeriodicalId":371182,"journal":{"name":"2017 19th Symposium on Virtual and Augmented Reality (SVR)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparing Different Strategies for Frame-to-Frame Rigid Registration of Point Clouds\",\"authors\":\"Fernando A. A. Yamada, M. Vieira, G. Giraldi, A. Apolinario\",\"doi\":\"10.1109/SVR.2017.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pairwise surface rigid registration aims to find the rigid transformation that best register two surfaces represented by point clouds. This work presents a comparison between seven algorithms, with different strategies to tackle rigid registration tasks. We focus on the frame-to-frame problem by using both point clouds and a RGB-D video stream in the experimental results. The former, is considered under different viewpoints, with the addition of outliers and noise. Once the ground truth rotation is provided, we discuss four different metrics to measure the rotation error in this case. The video sequence with depth information is segmented to get the target object. Next, the registration algorithms are applied and the average root mean squared error is computed. Since the ground truth is not available in this case, we develop a superposition strategy to visually check performance of the algorithms. Besides, we analyse the robustness of the techniques against spatial and temporal sampling rates.\",\"PeriodicalId\":371182,\"journal\":{\"name\":\"2017 19th Symposium on Virtual and Augmented Reality (SVR)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 19th Symposium on Virtual and Augmented Reality (SVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SVR.2017.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th Symposium on Virtual and Augmented Reality (SVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SVR.2017.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

两两曲面刚性配准的目的是寻找最适合配准由点云表示的两个曲面的刚体变换。这项工作提出了七个算法之间的比较,用不同的策略来处理刚性配准任务。在实验结果中,我们通过使用点云和RGB-D视频流来关注帧到帧的问题。前者是在不同的观点下考虑的,并添加了异常值和噪声。一旦提供了地面真值旋转,我们将讨论在这种情况下测量旋转误差的四种不同度量。对具有深度信息的视频序列进行分割,得到目标对象。然后,应用配准算法并计算平均均方根误差。由于在这种情况下无法获得基础真理,因此我们开发了一种叠加策略来直观地检查算法的性能。此外,我们分析了该技术对空间和时间采样率的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparing Different Strategies for Frame-to-Frame Rigid Registration of Point Clouds
Pairwise surface rigid registration aims to find the rigid transformation that best register two surfaces represented by point clouds. This work presents a comparison between seven algorithms, with different strategies to tackle rigid registration tasks. We focus on the frame-to-frame problem by using both point clouds and a RGB-D video stream in the experimental results. The former, is considered under different viewpoints, with the addition of outliers and noise. Once the ground truth rotation is provided, we discuss four different metrics to measure the rotation error in this case. The video sequence with depth information is segmented to get the target object. Next, the registration algorithms are applied and the average root mean squared error is computed. Since the ground truth is not available in this case, we develop a superposition strategy to visually check performance of the algorithms. Besides, we analyse the robustness of the techniques against spatial and temporal sampling rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of the inclusion of Virtual Reality in the Jeweler Manufacturing Process Based on the BIM Concept (Building Information Modeling) 3D Object Tracking in RGB-D Images Using Particle Swarm Optimization The Development of a Facial Animation System Based on Performance and the Use of an RGB-D Camera Analyzing AR Viewing Experience through Analytics Heat Maps for Augmented Content Aspects of User Profiles That Can Improve Mobile Augmented Reality Usage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1