{"title":"在高效节能的机器人电液系统中加入主动阻尼——压力和加速度反馈的比较","authors":"D. Padovani","doi":"10.1109/ICRAE50850.2020.9310881","DOIUrl":null,"url":null,"abstract":"The growing interest in energy efficiency, plug-and-play commissioning, and reduced maintenance for heavy-duty robotic manipulators directs towards self-contained, electro-hydraulic cylinders. These drives are characterized by extremely low damping that causes unwanted oscillations of the mechanical structure. Adding active damping to this class of energy-efficient architectures is essential. Hence, this paper bridges a literature gap by presenting a systematic comparison grounded on a model-based tuning of both pressure and acceleration feedback. It is shown that both approaches increase the system damping hugely and improve the performance of the linear system. Acceleration feedback should be preferred since it only modifies the damping. However, high-pass-filtered pressure feedback can represent a satisfactory alternative.","PeriodicalId":296832,"journal":{"name":"2020 5th International Conference on Robotics and Automation Engineering (ICRAE)","volume":"1865 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adding Active Damping to Energy-Efficient Electro-Hydraulic Systems for Robotic Manipulators — Comparing Pressure and Acceleration Feedback\",\"authors\":\"D. Padovani\",\"doi\":\"10.1109/ICRAE50850.2020.9310881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing interest in energy efficiency, plug-and-play commissioning, and reduced maintenance for heavy-duty robotic manipulators directs towards self-contained, electro-hydraulic cylinders. These drives are characterized by extremely low damping that causes unwanted oscillations of the mechanical structure. Adding active damping to this class of energy-efficient architectures is essential. Hence, this paper bridges a literature gap by presenting a systematic comparison grounded on a model-based tuning of both pressure and acceleration feedback. It is shown that both approaches increase the system damping hugely and improve the performance of the linear system. Acceleration feedback should be preferred since it only modifies the damping. However, high-pass-filtered pressure feedback can represent a satisfactory alternative.\",\"PeriodicalId\":296832,\"journal\":{\"name\":\"2020 5th International Conference on Robotics and Automation Engineering (ICRAE)\",\"volume\":\"1865 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Robotics and Automation Engineering (ICRAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAE50850.2020.9310881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Robotics and Automation Engineering (ICRAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAE50850.2020.9310881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adding Active Damping to Energy-Efficient Electro-Hydraulic Systems for Robotic Manipulators — Comparing Pressure and Acceleration Feedback
The growing interest in energy efficiency, plug-and-play commissioning, and reduced maintenance for heavy-duty robotic manipulators directs towards self-contained, electro-hydraulic cylinders. These drives are characterized by extremely low damping that causes unwanted oscillations of the mechanical structure. Adding active damping to this class of energy-efficient architectures is essential. Hence, this paper bridges a literature gap by presenting a systematic comparison grounded on a model-based tuning of both pressure and acceleration feedback. It is shown that both approaches increase the system damping hugely and improve the performance of the linear system. Acceleration feedback should be preferred since it only modifies the damping. However, high-pass-filtered pressure feedback can represent a satisfactory alternative.