基于分割的视网膜图像融合预测高血压

Yin Xie, Shibiao Xu, Li Guo, Yinbing Tian
{"title":"基于分割的视网膜图像融合预测高血压","authors":"Yin Xie, Shibiao Xu, Li Guo, Yinbing Tian","doi":"10.1145/3507971.3507987","DOIUrl":null,"url":null,"abstract":"Retinal image vessel segmentation or artery/vein segmentation tasks have been investigated for a long time, and hypertension prediction based on statistical data or body indicators has been learned well. However, the gap between retinal image segmentation and retinal image hypertension prediction still exists. In this paper, we bridge the gap by introducing a model-agnostic cross attention module in segmentation part and a semantic image fusion module in hypertension prediction part thus to form a novel segmentation-based pipeline for hypertension prediction. Specifically, the cross attention module adopts cross multiplication to attend encoder and decoder features, which enhances the artery/vein segmentation ability in uncertain region and border region in retinal image. Then we design a semantic image fusion module to fuse segmented artery/vein vessel image and original image as the classifier input to predict hypertension. The experimental results demonstrate that our model can efficiently predict hypertension, and we achieve 94.87% accuracy, 94.74% specificity, 95.00% sensitivity respectively on 393 retinal images from Kaggle ODiR5k dataset at : https://www.kaggle.com/ocular-disease-recognition-odir5k.","PeriodicalId":439757,"journal":{"name":"Proceedings of the 7th International Conference on Communication and Information Processing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Segmentation-based Retinal Image Fusion for Hypertension Prediction\",\"authors\":\"Yin Xie, Shibiao Xu, Li Guo, Yinbing Tian\",\"doi\":\"10.1145/3507971.3507987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retinal image vessel segmentation or artery/vein segmentation tasks have been investigated for a long time, and hypertension prediction based on statistical data or body indicators has been learned well. However, the gap between retinal image segmentation and retinal image hypertension prediction still exists. In this paper, we bridge the gap by introducing a model-agnostic cross attention module in segmentation part and a semantic image fusion module in hypertension prediction part thus to form a novel segmentation-based pipeline for hypertension prediction. Specifically, the cross attention module adopts cross multiplication to attend encoder and decoder features, which enhances the artery/vein segmentation ability in uncertain region and border region in retinal image. Then we design a semantic image fusion module to fuse segmented artery/vein vessel image and original image as the classifier input to predict hypertension. The experimental results demonstrate that our model can efficiently predict hypertension, and we achieve 94.87% accuracy, 94.74% specificity, 95.00% sensitivity respectively on 393 retinal images from Kaggle ODiR5k dataset at : https://www.kaggle.com/ocular-disease-recognition-odir5k.\",\"PeriodicalId\":439757,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Communication and Information Processing\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Communication and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3507971.3507987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Communication and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3507971.3507987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

视网膜图像血管分割或动脉/静脉分割任务已经研究了很长时间,基于统计数据或身体指标的高血压预测已经学得很好。然而,视网膜图像分割与视网膜图像高血压预测之间的差距仍然存在。在本文中,我们通过在分割部分引入模型不可知的交叉注意模块和在高血压预测部分引入语义图像融合模块来弥补这一空白,从而形成了一种新的基于分割的高血压预测管道。其中交叉注意模块采用交叉乘法来关注编码器和解码器的特征,增强了视网膜图像在不确定区域和边界区域的动脉/静脉分割能力。然后设计语义图像融合模块,将分割后的动脉/静脉血管图像与原始图像融合作为分类器输入,预测高血压。实验结果表明,我们的模型可以有效地预测高血压,在Kaggle ODiR5k数据集中的393张视网膜图像上,我们分别达到了94.87%的准确率、94.74%的特异性和95.00%的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Segmentation-based Retinal Image Fusion for Hypertension Prediction
Retinal image vessel segmentation or artery/vein segmentation tasks have been investigated for a long time, and hypertension prediction based on statistical data or body indicators has been learned well. However, the gap between retinal image segmentation and retinal image hypertension prediction still exists. In this paper, we bridge the gap by introducing a model-agnostic cross attention module in segmentation part and a semantic image fusion module in hypertension prediction part thus to form a novel segmentation-based pipeline for hypertension prediction. Specifically, the cross attention module adopts cross multiplication to attend encoder and decoder features, which enhances the artery/vein segmentation ability in uncertain region and border region in retinal image. Then we design a semantic image fusion module to fuse segmented artery/vein vessel image and original image as the classifier input to predict hypertension. The experimental results demonstrate that our model can efficiently predict hypertension, and we achieve 94.87% accuracy, 94.74% specificity, 95.00% sensitivity respectively on 393 retinal images from Kaggle ODiR5k dataset at : https://www.kaggle.com/ocular-disease-recognition-odir5k.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Path Planning of UAV Based on Pheromone Diffusion Ant Colony Algorithm Access Control Design Based on User Role Type in Telemedicine System Using Ethereum Blockchain Identifying Giant Clams Species using Machine Learning Techniques Blockchain based Distributed Oracle in Time Sensitive Scenario A Reliable Digital Watermarking Algorithm Based On DCT-SVD Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1