拟合稀疏高斯图形模型的凸优化技术

O. Banerjee, L. Ghaoui, A. d’Aspremont, G. Natsoulis
{"title":"拟合稀疏高斯图形模型的凸优化技术","authors":"O. Banerjee, L. Ghaoui, A. d’Aspremont, G. Natsoulis","doi":"10.1145/1143844.1143856","DOIUrl":null,"url":null,"abstract":"We consider the problem of fitting a large-scale covariance matrix to multivariate Gaussian data in such a way that the inverse is sparse, thus providing model selection. Beginning with a dense empirical covariance matrix, we solve a maximum likelihood problem with an l1-norm penalty term added to encourage sparsity in the inverse. For models with tens of nodes, the resulting problem can be solved using standard interior-point algorithms for convex optimization, but these methods scale poorly with problem size. We present two new algorithms aimed at solving problems with a thousand nodes. The first, based on Nesterov's first-order algorithm, yields a rigorous complexity estimate for the problem, with a much better dependence on problem size than interior-point methods. Our second algorithm uses block coordinate descent, updating row/columns of the covariance matrix sequentially. Experiments with genomic data show that our method is able to uncover biologically interpretable connections among genes.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"192","resultStr":"{\"title\":\"Convex optimization techniques for fitting sparse Gaussian graphical models\",\"authors\":\"O. Banerjee, L. Ghaoui, A. d’Aspremont, G. Natsoulis\",\"doi\":\"10.1145/1143844.1143856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of fitting a large-scale covariance matrix to multivariate Gaussian data in such a way that the inverse is sparse, thus providing model selection. Beginning with a dense empirical covariance matrix, we solve a maximum likelihood problem with an l1-norm penalty term added to encourage sparsity in the inverse. For models with tens of nodes, the resulting problem can be solved using standard interior-point algorithms for convex optimization, but these methods scale poorly with problem size. We present two new algorithms aimed at solving problems with a thousand nodes. The first, based on Nesterov's first-order algorithm, yields a rigorous complexity estimate for the problem, with a much better dependence on problem size than interior-point methods. Our second algorithm uses block coordinate descent, updating row/columns of the covariance matrix sequentially. Experiments with genomic data show that our method is able to uncover biologically interpretable connections among genes.\",\"PeriodicalId\":124011,\"journal\":{\"name\":\"Proceedings of the 23rd international conference on Machine learning\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"192\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd international conference on Machine learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1143844.1143856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 192

摘要

我们考虑将大规模协方差矩阵拟合到多变量高斯数据的问题,这样逆是稀疏的,从而提供模型选择。从一个密集的经验协方差矩阵开始,我们解决了一个极大似然问题,增加了一个11范数惩罚项,以鼓励逆的稀疏性。对于具有数十个节点的模型,可以使用凸优化的标准内点算法来解决所产生的问题,但这些方法对问题规模的可扩展性很差。我们提出了两种新的算法,旨在解决一千节点的问题。第一种方法基于Nesterov的一阶算法,对问题产生了严格的复杂性估计,与内点方法相比,它对问题大小的依赖性要好得多。我们的第二个算法使用块坐标下降,按顺序更新协方差矩阵的行/列。基因组数据实验表明,我们的方法能够揭示基因之间可解释的生物学联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convex optimization techniques for fitting sparse Gaussian graphical models
We consider the problem of fitting a large-scale covariance matrix to multivariate Gaussian data in such a way that the inverse is sparse, thus providing model selection. Beginning with a dense empirical covariance matrix, we solve a maximum likelihood problem with an l1-norm penalty term added to encourage sparsity in the inverse. For models with tens of nodes, the resulting problem can be solved using standard interior-point algorithms for convex optimization, but these methods scale poorly with problem size. We present two new algorithms aimed at solving problems with a thousand nodes. The first, based on Nesterov's first-order algorithm, yields a rigorous complexity estimate for the problem, with a much better dependence on problem size than interior-point methods. Our second algorithm uses block coordinate descent, updating row/columns of the covariance matrix sequentially. Experiments with genomic data show that our method is able to uncover biologically interpretable connections among genes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On a theory of learning with similarity functions Bayesian learning of measurement and structural models Predictive search distributions Data association for topic intensity tracking Feature value acquisition in testing: a sequential batch test algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1