光伏/BES混合系统小时调度状态反馈控制器启发式优化

M. Z. Daud, A. Mohamed
{"title":"光伏/BES混合系统小时调度状态反馈控制器启发式优化","authors":"M. Z. Daud, A. Mohamed","doi":"10.1109/ISGT-ASIA.2014.6873774","DOIUrl":null,"url":null,"abstract":"This paper presents an improved state-of-charge feedback (SOC-FB) control scheme for battery energy storage (BES) for used in hourly dispatch the output of hybrid photovoltaic (PV) with battery energy storage (BES) system. Heuristic optimisation approaches employing the genetic algorithm, gravitational search algorithm and particle swarm optimisation are used in obtaining the optimal control parameters for the SOC-FB controller in tracking the hourly dispatched set-point (PSET) curve of the PV/BES system. The studied multi-parameter optimization problem also considers the evaluation of the optimal size of the BES. The performance of the heuristic optimization techniques are validated by comparing the results obtained from Matlab simulation with the results from previous works. In addition, the optimal controller with the proposed BES size is further validated through simulation using an actual PV system output data.","PeriodicalId":444960,"journal":{"name":"2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Heuristic optimisation of state-of-charge feedback controller for hourly dispatch of hybrid PV/BES system\",\"authors\":\"M. Z. Daud, A. Mohamed\",\"doi\":\"10.1109/ISGT-ASIA.2014.6873774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an improved state-of-charge feedback (SOC-FB) control scheme for battery energy storage (BES) for used in hourly dispatch the output of hybrid photovoltaic (PV) with battery energy storage (BES) system. Heuristic optimisation approaches employing the genetic algorithm, gravitational search algorithm and particle swarm optimisation are used in obtaining the optimal control parameters for the SOC-FB controller in tracking the hourly dispatched set-point (PSET) curve of the PV/BES system. The studied multi-parameter optimization problem also considers the evaluation of the optimal size of the BES. The performance of the heuristic optimization techniques are validated by comparing the results obtained from Matlab simulation with the results from previous works. In addition, the optimal controller with the proposed BES size is further validated through simulation using an actual PV system output data.\",\"PeriodicalId\":444960,\"journal\":{\"name\":\"2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT-ASIA.2014.6873774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-ASIA.2014.6873774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种改进的电池储能状态反馈(SOC-FB)控制方案,用于光伏与电池储能混合发电系统的分时调度。采用遗传算法、引力搜索算法和粒子群算法的启发式优化方法,获得了SOC-FB控制器跟踪PV/BES系统小时调度设定点曲线的最优控制参数。所研究的多参数优化问题还考虑了BES最优尺寸的评定。通过将Matlab仿真结果与前人的研究结果进行比较,验证了启发式优化技术的性能。此外,通过使用实际光伏系统输出数据进行仿真,进一步验证了具有所提出的BES尺寸的最优控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heuristic optimisation of state-of-charge feedback controller for hourly dispatch of hybrid PV/BES system
This paper presents an improved state-of-charge feedback (SOC-FB) control scheme for battery energy storage (BES) for used in hourly dispatch the output of hybrid photovoltaic (PV) with battery energy storage (BES) system. Heuristic optimisation approaches employing the genetic algorithm, gravitational search algorithm and particle swarm optimisation are used in obtaining the optimal control parameters for the SOC-FB controller in tracking the hourly dispatched set-point (PSET) curve of the PV/BES system. The studied multi-parameter optimization problem also considers the evaluation of the optimal size of the BES. The performance of the heuristic optimization techniques are validated by comparing the results obtained from Matlab simulation with the results from previous works. In addition, the optimal controller with the proposed BES size is further validated through simulation using an actual PV system output data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A measurement technique to identify and locate partial discharge in transformer with AE and HFCT Fast fault recovery of a grid integrated wind farm based HVDC Light transmission system Voltage profile and loss assessment of distribution systems with fixed speed wind generators Industrial CHP optimal management in the energy market under incomplete information A scope for the research and argument activities on electric vehicle development mode in demonstration city
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1