{"title":"行为装置建模的非参数方法","authors":"D. Drmanac, B. Bolin, Li-C. Wang","doi":"10.1109/ISQED.2010.5450433","DOIUrl":null,"url":null,"abstract":"This work proposes a non-parametric methodology for quick and effective behavioral macromodeling of complex digital and analog devices. Gaussian Process Regression (GPR) learning algorithms are used to generate simple, robust, and widely applicable time-domain models without specifying device equations or parameters. SPICE simulations expose device dynamics to train behavioral models while exhaustive validation ensures accurate and efficient models are generated. Average speedups of 97X are observed over SPICE simulation maintaining accurate outputs within 95% confidence intervals.","PeriodicalId":369046,"journal":{"name":"2010 11th International Symposium on Quality Electronic Design (ISQED)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A non-parametric approach to behavioral device modeling\",\"authors\":\"D. Drmanac, B. Bolin, Li-C. Wang\",\"doi\":\"10.1109/ISQED.2010.5450433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a non-parametric methodology for quick and effective behavioral macromodeling of complex digital and analog devices. Gaussian Process Regression (GPR) learning algorithms are used to generate simple, robust, and widely applicable time-domain models without specifying device equations or parameters. SPICE simulations expose device dynamics to train behavioral models while exhaustive validation ensures accurate and efficient models are generated. Average speedups of 97X are observed over SPICE simulation maintaining accurate outputs within 95% confidence intervals.\",\"PeriodicalId\":369046,\"journal\":{\"name\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2010.5450433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2010.5450433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A non-parametric approach to behavioral device modeling
This work proposes a non-parametric methodology for quick and effective behavioral macromodeling of complex digital and analog devices. Gaussian Process Regression (GPR) learning algorithms are used to generate simple, robust, and widely applicable time-domain models without specifying device equations or parameters. SPICE simulations expose device dynamics to train behavioral models while exhaustive validation ensures accurate and efficient models are generated. Average speedups of 97X are observed over SPICE simulation maintaining accurate outputs within 95% confidence intervals.