{"title":"医疗机器人中的安全人机交互:以机器人骨折手术系统为例","authors":"I. Georgilas, G. Dagnino, S. Dogramadzi","doi":"10.1142/S2424905X17400086","DOIUrl":null,"url":null,"abstract":"This paper presents a safety analysis of a Robotic Fracture Surgery System using the Systems-Theoretic Process Analysis (STPA). It focuses particularly on hazards caused by the human in the loop. The robotic system and operating staff are modeled including information flow between different components of the system. The analysis has generated a set of requirements for the system design that can ultimately mitigate the identified hazards, as well as a preliminary set of human factors that can improve safety.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Safe Human-Robot Interaction in Medical Robotics: A case study on Robotic Fracture Surgery System\",\"authors\":\"I. Georgilas, G. Dagnino, S. Dogramadzi\",\"doi\":\"10.1142/S2424905X17400086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a safety analysis of a Robotic Fracture Surgery System using the Systems-Theoretic Process Analysis (STPA). It focuses particularly on hazards caused by the human in the loop. The robotic system and operating staff are modeled including information flow between different components of the system. The analysis has generated a set of requirements for the system design that can ultimately mitigate the identified hazards, as well as a preliminary set of human factors that can improve safety.\",\"PeriodicalId\":447761,\"journal\":{\"name\":\"J. Medical Robotics Res.\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Medical Robotics Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2424905X17400086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Medical Robotics Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2424905X17400086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Safe Human-Robot Interaction in Medical Robotics: A case study on Robotic Fracture Surgery System
This paper presents a safety analysis of a Robotic Fracture Surgery System using the Systems-Theoretic Process Analysis (STPA). It focuses particularly on hazards caused by the human in the loop. The robotic system and operating staff are modeled including information flow between different components of the system. The analysis has generated a set of requirements for the system design that can ultimately mitigate the identified hazards, as well as a preliminary set of human factors that can improve safety.