气流型DPAL的实验研究

Taro Yamamoto, F. Yamamoto, M. Endo, F. Wani
{"title":"气流型DPAL的实验研究","authors":"Taro Yamamoto, F. Yamamoto, M. Endo, F. Wani","doi":"10.1117/12.2256484","DOIUrl":null,"url":null,"abstract":"We have developed a small-scale, diode-pumped alkali laser with a closed-loop gas circulation device and investigated the effect of gas circulation on the laser output power. The gain cell, with a 5 cm active length, is fitted with antireflection windows, and a cross-flow fan is incorporated inside it. The active medium is composed of cesium, hydrocarbon, and a buffer gas whose total pressure is approximately 2 atmospheres. The laser output power was measured as a function of the gas flow velocity for different buffer gases. In the case of argon, the laser power was strongly dependent on the gas flow velocity, whereas it was almost independent of the gas flow in the case of helium. The maximum output power of the argon buffer was close to that of the helium buffer when the gas velocity exceeded 6 m/s. The experimental results were in good agreement with the numerical simulations.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Experimental investigation of gas flow type DPAL\",\"authors\":\"Taro Yamamoto, F. Yamamoto, M. Endo, F. Wani\",\"doi\":\"10.1117/12.2256484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a small-scale, diode-pumped alkali laser with a closed-loop gas circulation device and investigated the effect of gas circulation on the laser output power. The gain cell, with a 5 cm active length, is fitted with antireflection windows, and a cross-flow fan is incorporated inside it. The active medium is composed of cesium, hydrocarbon, and a buffer gas whose total pressure is approximately 2 atmospheres. The laser output power was measured as a function of the gas flow velocity for different buffer gases. In the case of argon, the laser power was strongly dependent on the gas flow velocity, whereas it was almost independent of the gas flow in the case of helium. The maximum output power of the argon buffer was close to that of the helium buffer when the gas velocity exceeded 6 m/s. The experimental results were in good agreement with the numerical simulations.\",\"PeriodicalId\":293926,\"journal\":{\"name\":\"International Symposium on High Power Laser Systems and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on High Power Laser Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2256484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on High Power Laser Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2256484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研制了一种带有闭环气体循环装置的小型二极管抽运碱激光器,并研究了气体循环对激光器输出功率的影响。增益单元的有效长度为5厘米,配有抗反射窗,并在其内部安装了一个横流风扇。活性介质由铯、碳氢化合物和总压力约为2个大气压的缓冲气体组成。测量了不同缓冲气体下激光输出功率与气体流速的关系。在氩的情况下,激光功率强烈地依赖于气体流动速度,而在氦的情况下,它几乎与气体流动无关。当气体流速超过6 m/s时,氩气缓冲器的最大输出功率接近氦气缓冲器的输出功率。实验结果与数值模拟结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental investigation of gas flow type DPAL
We have developed a small-scale, diode-pumped alkali laser with a closed-loop gas circulation device and investigated the effect of gas circulation on the laser output power. The gain cell, with a 5 cm active length, is fitted with antireflection windows, and a cross-flow fan is incorporated inside it. The active medium is composed of cesium, hydrocarbon, and a buffer gas whose total pressure is approximately 2 atmospheres. The laser output power was measured as a function of the gas flow velocity for different buffer gases. In the case of argon, the laser power was strongly dependent on the gas flow velocity, whereas it was almost independent of the gas flow in the case of helium. The maximum output power of the argon buffer was close to that of the helium buffer when the gas velocity exceeded 6 m/s. The experimental results were in good agreement with the numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computer simulation of effect of conditions on discharge-excited high power gas flow CO laser TEA HF laser with a high specific radiation energy Pressure broadening coefficients for the 811.5nm Ar line and 811.3nm Kr line in rare gases Post-filamentation high-intensive light channels formation upon ultrashort laser pulses self-focusing in air Optically pumped Cs vapor lasers: pump-to-laser beam overlap optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1