{"title":"等离子体掺杂与激光退火形成的超浅结","authors":"S. Heo, H. Hwang","doi":"10.1109/RTP.2006.367985","DOIUrl":null,"url":null,"abstract":"We investigated ultra-shallow junction prepared by plasma doping (PLAD) and laser annealing (LA). Although PLAD is promising doping technology for the sub-45nm technology node due to the high dose rate at low energy, it has problems which is related with hydrogen or fluorine. The implanted hydrogen generally increases damage in the Si substrate. The fluorine also retards dopant activation and increases dopant deactivation during post-annealing step. Conventional one step annealing processes such as rapid thermal annealing (RTA) or excimer laser annealing (LA) are not effective method for high dopant activation. To minimize the effect of hydrogen or fluorine, we propose additional pre-annealing followed by conventional laser annealing. By employing low temperature pre-annealing, we can improve electrical characteristics such as low sheet resistance, high activation rates, shallow junction depth and reduced dopant deactivation. The improvement can be explained by reduced defect density and out-diffusion of fluorine or hydrogen which in turn enhances dopant activation during ELA","PeriodicalId":114586,"journal":{"name":"2006 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ultra-shallow Junction Formed by Plasma Doping and Laser Annealing\",\"authors\":\"S. Heo, H. Hwang\",\"doi\":\"10.1109/RTP.2006.367985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigated ultra-shallow junction prepared by plasma doping (PLAD) and laser annealing (LA). Although PLAD is promising doping technology for the sub-45nm technology node due to the high dose rate at low energy, it has problems which is related with hydrogen or fluorine. The implanted hydrogen generally increases damage in the Si substrate. The fluorine also retards dopant activation and increases dopant deactivation during post-annealing step. Conventional one step annealing processes such as rapid thermal annealing (RTA) or excimer laser annealing (LA) are not effective method for high dopant activation. To minimize the effect of hydrogen or fluorine, we propose additional pre-annealing followed by conventional laser annealing. By employing low temperature pre-annealing, we can improve electrical characteristics such as low sheet resistance, high activation rates, shallow junction depth and reduced dopant deactivation. The improvement can be explained by reduced defect density and out-diffusion of fluorine or hydrogen which in turn enhances dopant activation during ELA\",\"PeriodicalId\":114586,\"journal\":{\"name\":\"2006 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTP.2006.367985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 14th IEEE International Conference on Advanced Thermal Processing of Semiconductors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTP.2006.367985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultra-shallow Junction Formed by Plasma Doping and Laser Annealing
We investigated ultra-shallow junction prepared by plasma doping (PLAD) and laser annealing (LA). Although PLAD is promising doping technology for the sub-45nm technology node due to the high dose rate at low energy, it has problems which is related with hydrogen or fluorine. The implanted hydrogen generally increases damage in the Si substrate. The fluorine also retards dopant activation and increases dopant deactivation during post-annealing step. Conventional one step annealing processes such as rapid thermal annealing (RTA) or excimer laser annealing (LA) are not effective method for high dopant activation. To minimize the effect of hydrogen or fluorine, we propose additional pre-annealing followed by conventional laser annealing. By employing low temperature pre-annealing, we can improve electrical characteristics such as low sheet resistance, high activation rates, shallow junction depth and reduced dopant deactivation. The improvement can be explained by reduced defect density and out-diffusion of fluorine or hydrogen which in turn enhances dopant activation during ELA