利用时变图改进车辆机动性分析

Gabriel R. Diniz, F. D. Cunha, A. Loureiro
{"title":"利用时变图改进车辆机动性分析","authors":"Gabriel R. Diniz, F. D. Cunha, A. Loureiro","doi":"10.1109/DCOSS49796.2020.00041","DOIUrl":null,"url":null,"abstract":"The increase in the vehicular fleet in the last decade has caused several problems in urban scenarios. Modeling VANETs as graphs enables us to apply graph theory algorithms, allowing a more complex and deeper analysis of reality. In this work, we identify three different approaches to model vehicular networks and analyze two real well-know large-scale traces from Rome and San Francisco city. We perform analysis on the network aspect and in the vehicular aspect as an individual node. This analysis was made to verify which one can achieve the highest reliability and accuracy.","PeriodicalId":198837,"journal":{"name":"2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving the Vehicular Mobility Analysis Using Time-Varying Graphs\",\"authors\":\"Gabriel R. Diniz, F. D. Cunha, A. Loureiro\",\"doi\":\"10.1109/DCOSS49796.2020.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increase in the vehicular fleet in the last decade has caused several problems in urban scenarios. Modeling VANETs as graphs enables us to apply graph theory algorithms, allowing a more complex and deeper analysis of reality. In this work, we identify three different approaches to model vehicular networks and analyze two real well-know large-scale traces from Rome and San Francisco city. We perform analysis on the network aspect and in the vehicular aspect as an individual node. This analysis was made to verify which one can achieve the highest reliability and accuracy.\",\"PeriodicalId\":198837,\"journal\":{\"name\":\"2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCOSS49796.2020.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCOSS49796.2020.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在过去十年中,车辆数量的增加给城市带来了一些问题。将VANETs建模为图形使我们能够应用图论算法,从而允许对现实进行更复杂和更深入的分析。在这项工作中,我们确定了三种不同的方法来模拟车辆网络,并分析了来自罗马和旧金山的两个真正众所周知的大规模痕迹。我们在网络方面进行分析,在车辆方面作为一个单独的节点。这个分析是为了验证哪一个可以达到最高的可靠性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the Vehicular Mobility Analysis Using Time-Varying Graphs
The increase in the vehicular fleet in the last decade has caused several problems in urban scenarios. Modeling VANETs as graphs enables us to apply graph theory algorithms, allowing a more complex and deeper analysis of reality. In this work, we identify three different approaches to model vehicular networks and analyze two real well-know large-scale traces from Rome and San Francisco city. We perform analysis on the network aspect and in the vehicular aspect as an individual node. This analysis was made to verify which one can achieve the highest reliability and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Health Information Exchange with Blockchain amid Covid-19-like Pandemics Instrumentation for Cooking Pattern Analysis in Peri-Urban Nepal Predictive and Explainable Machine Learning for Industrial Internet of Things Applications Message from the IoTI4 2020 Workshop Chairs An Agnostic Data-Driven Approach to Predict Stoppages of Industrial Packing Machine in Near
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1