基于RGB-D摄像机的并行跟踪和网格划分

S. Lieberknecht, Andrea Huber, Slobodan Ilic, Selim Benhimane
{"title":"基于RGB-D摄像机的并行跟踪和网格划分","authors":"S. Lieberknecht, Andrea Huber, Slobodan Ilic, Selim Benhimane","doi":"10.1109/ISMAR.2011.6092380","DOIUrl":null,"url":null,"abstract":"Compared to standard color cameras, RGB-D cameras are designed to additionally provide the depth of imaged pixels which in turn results in a dense colored 3D point cloud representing the environment from a certain viewpoint. We present a real-time tracking method that performs motion estimation of a consumer RGB-D camera with respect to an unknown environment while at the same time reconstructing this environment as a dense textured mesh. Unlike parallel tracking and mapping performed with a standard color or grey scale camera, tracking with an RGB-D camera allows a correctly scaled camera motion estimation. Therefore, there is no need for measuring the environment by any additional tool or equipping the environment by placing objects in it with known sizes. The tracking can be directly started and does not require any preliminary known and/or constrained camera motion. The colored point clouds obtained from every RGB-D image are used to create textured meshes representing the environment from a certain camera view and the real-time estimated camera motion is used to correctly align these meshes over time in order to combine them into a dense reconstruction of the environment. We quantitatively evaluated the proposed method using real image sequences of a challenging scenario and their corresponding ground truth motion obtained with a mechanical measurement arm. We also compared it to a commonly used state-of-the-art method where only the color information is used. We show the superiority of the proposed tracking in terms of accuracy, robustness and usability. We also demonstrate its usage in several Augmented Reality scenarios where the tracking allows a reliable camera motion estimation and the meshing increases the realism of the augmentations by correctly handling their occlusions.","PeriodicalId":298757,"journal":{"name":"2011 10th IEEE International Symposium on Mixed and Augmented Reality","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"RGB-D camera-based parallel tracking and meshing\",\"authors\":\"S. Lieberknecht, Andrea Huber, Slobodan Ilic, Selim Benhimane\",\"doi\":\"10.1109/ISMAR.2011.6092380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared to standard color cameras, RGB-D cameras are designed to additionally provide the depth of imaged pixels which in turn results in a dense colored 3D point cloud representing the environment from a certain viewpoint. We present a real-time tracking method that performs motion estimation of a consumer RGB-D camera with respect to an unknown environment while at the same time reconstructing this environment as a dense textured mesh. Unlike parallel tracking and mapping performed with a standard color or grey scale camera, tracking with an RGB-D camera allows a correctly scaled camera motion estimation. Therefore, there is no need for measuring the environment by any additional tool or equipping the environment by placing objects in it with known sizes. The tracking can be directly started and does not require any preliminary known and/or constrained camera motion. The colored point clouds obtained from every RGB-D image are used to create textured meshes representing the environment from a certain camera view and the real-time estimated camera motion is used to correctly align these meshes over time in order to combine them into a dense reconstruction of the environment. We quantitatively evaluated the proposed method using real image sequences of a challenging scenario and their corresponding ground truth motion obtained with a mechanical measurement arm. We also compared it to a commonly used state-of-the-art method where only the color information is used. We show the superiority of the proposed tracking in terms of accuracy, robustness and usability. We also demonstrate its usage in several Augmented Reality scenarios where the tracking allows a reliable camera motion estimation and the meshing increases the realism of the augmentations by correctly handling their occlusions.\",\"PeriodicalId\":298757,\"journal\":{\"name\":\"2011 10th IEEE International Symposium on Mixed and Augmented Reality\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th IEEE International Symposium on Mixed and Augmented Reality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMAR.2011.6092380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th IEEE International Symposium on Mixed and Augmented Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR.2011.6092380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

与标准彩色相机相比,RGB-D相机的设计额外提供了图像像素的深度,这反过来又产生了一个密集的彩色3D点云,从某个角度代表环境。我们提出了一种实时跟踪方法,该方法对消费者RGB-D相机在未知环境中进行运动估计,同时将该环境重建为密集纹理网格。与使用标准彩色或灰度相机执行的并行跟踪和映射不同,使用RGB-D相机进行跟踪可以正确缩放相机运动估计。因此,不需要通过任何额外的工具来测量环境,也不需要通过在环境中放置已知尺寸的物体来装备环境。跟踪可以直接开始,不需要任何初步的已知和/或约束相机运动。从每个RGB-D图像中获得的彩色点云用于创建代表特定摄像机视图的环境的纹理网格,并使用实时估计的摄像机运动来随着时间的推移正确对齐这些网格,以便将它们组合成密集的环境重建。我们使用具有挑战性场景的真实图像序列及其对应的机械测量臂获得的地面真值运动来定量评估所提出的方法。我们还将其与仅使用颜色信息的常用最先进方法进行了比较。我们证明了所提出的跟踪在准确性、鲁棒性和可用性方面的优越性。我们还演示了它在几个增强现实场景中的使用,其中跟踪允许可靠的相机运动估计,网格通过正确处理它们的遮挡来增加增强的真实感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RGB-D camera-based parallel tracking and meshing
Compared to standard color cameras, RGB-D cameras are designed to additionally provide the depth of imaged pixels which in turn results in a dense colored 3D point cloud representing the environment from a certain viewpoint. We present a real-time tracking method that performs motion estimation of a consumer RGB-D camera with respect to an unknown environment while at the same time reconstructing this environment as a dense textured mesh. Unlike parallel tracking and mapping performed with a standard color or grey scale camera, tracking with an RGB-D camera allows a correctly scaled camera motion estimation. Therefore, there is no need for measuring the environment by any additional tool or equipping the environment by placing objects in it with known sizes. The tracking can be directly started and does not require any preliminary known and/or constrained camera motion. The colored point clouds obtained from every RGB-D image are used to create textured meshes representing the environment from a certain camera view and the real-time estimated camera motion is used to correctly align these meshes over time in order to combine them into a dense reconstruction of the environment. We quantitatively evaluated the proposed method using real image sequences of a challenging scenario and their corresponding ground truth motion obtained with a mechanical measurement arm. We also compared it to a commonly used state-of-the-art method where only the color information is used. We show the superiority of the proposed tracking in terms of accuracy, robustness and usability. We also demonstrate its usage in several Augmented Reality scenarios where the tracking allows a reliable camera motion estimation and the meshing increases the realism of the augmentations by correctly handling their occlusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Indoor positioning and navigation for mobile AR Light factorization for mixed-frequency shadows in augmented reality 3D high dynamic range display system Adaptive camera-based color mapping for mixed-reality applications Image-based clothes transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1