{"title":"复杂样细胞的自组织","authors":"K. Fukushima, K. Yoshimoto","doi":"10.1109/ICONIP.1999.843997","DOIUrl":null,"url":null,"abstract":"Proposes a new learning rule by which cells with shift-invariant receptive fields are self-organized. With this learning rule, cells similar to simple and complex cells in the primary visual cortex are generated in a network. To demonstrate the new learning rule, we simulate a three-layered network that consists of an input layer (the retina), a layer of S-cells (simple cells) and a layer of C-cells (complex cells). During the learning, straight lines of various orientations sweep across the input layer. Both S- and C-cells are created through competition. Although S-cells compete depending on their instantaneous outputs, C-cells compete depending on the traces (or temporal averages) of their outputs. For the self-organization of S-cells, only winner S-cells increase their input connections in a similar way to that for the neocognitron. In other words, LTP (long-term potentiation) is induced in the input connections of the winner cells. For the self-organization of C-cells, however, loser C-cells decrease their input connections (LTD=long-term depression), while winners increase their input connections (LTP). Both S- and C-cells are accompanied by inhibitory cells. Modification of inhibitory connections together with excitatory connections is important for the creation of C-cells as well as S-cells.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-organization of complex-like cells\",\"authors\":\"K. Fukushima, K. Yoshimoto\",\"doi\":\"10.1109/ICONIP.1999.843997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposes a new learning rule by which cells with shift-invariant receptive fields are self-organized. With this learning rule, cells similar to simple and complex cells in the primary visual cortex are generated in a network. To demonstrate the new learning rule, we simulate a three-layered network that consists of an input layer (the retina), a layer of S-cells (simple cells) and a layer of C-cells (complex cells). During the learning, straight lines of various orientations sweep across the input layer. Both S- and C-cells are created through competition. Although S-cells compete depending on their instantaneous outputs, C-cells compete depending on the traces (or temporal averages) of their outputs. For the self-organization of S-cells, only winner S-cells increase their input connections in a similar way to that for the neocognitron. In other words, LTP (long-term potentiation) is induced in the input connections of the winner cells. For the self-organization of C-cells, however, loser C-cells decrease their input connections (LTD=long-term depression), while winners increase their input connections (LTP). Both S- and C-cells are accompanied by inhibitory cells. Modification of inhibitory connections together with excitatory connections is important for the creation of C-cells as well as S-cells.\",\"PeriodicalId\":237855,\"journal\":{\"name\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.1999.843997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.843997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的学习规则,根据该规则,具有位移不变接受野的细胞是自组织的。根据这一学习规则,初级视觉皮层中类似于简单和复杂细胞的细胞在一个网络中生成。为了演示新的学习规则,我们模拟了一个由输入层(视网膜)、s细胞层(简单细胞)和c细胞层(复杂细胞)组成的三层网络。在学习过程中,各种方向的直线扫过输入层。S细胞和c细胞都是通过竞争产生的。虽然s细胞的竞争取决于它们的瞬时输出,但c细胞的竞争取决于它们输出的轨迹(或时间平均值)。对于s细胞的自组织,只有获胜的s细胞以类似于新认知细胞的方式增加其输入连接。换句话说,LTP(长期增强)在获胜细胞的输入连接中被诱导。然而,对于c细胞的自组织,失败者c细胞减少其输入连接(LTD=长期抑郁),而赢家c细胞增加其输入连接(LTP)。S细胞和c细胞均伴有抑制细胞。抑制性连接和兴奋性连接的改变对于c细胞和s细胞的产生是重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-organization of complex-like cells
Proposes a new learning rule by which cells with shift-invariant receptive fields are self-organized. With this learning rule, cells similar to simple and complex cells in the primary visual cortex are generated in a network. To demonstrate the new learning rule, we simulate a three-layered network that consists of an input layer (the retina), a layer of S-cells (simple cells) and a layer of C-cells (complex cells). During the learning, straight lines of various orientations sweep across the input layer. Both S- and C-cells are created through competition. Although S-cells compete depending on their instantaneous outputs, C-cells compete depending on the traces (or temporal averages) of their outputs. For the self-organization of S-cells, only winner S-cells increase their input connections in a similar way to that for the neocognitron. In other words, LTP (long-term potentiation) is induced in the input connections of the winner cells. For the self-organization of C-cells, however, loser C-cells decrease their input connections (LTD=long-term depression), while winners increase their input connections (LTP). Both S- and C-cells are accompanied by inhibitory cells. Modification of inhibitory connections together with excitatory connections is important for the creation of C-cells as well as S-cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Market basket analysis of library circulation data Software forensics for discriminating between program authors using case-based reasoning, feedforward neural networks and multiple discriminant analysis Learning and recall of temporal sequences in the network of CA3 pyramidal cells and a basket cell Adaptive sensory integrating neural network based on a Bayesian estimation method Pre-filter design for high speed contouring machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1