使用Actor-Critic强化学习最大化车辆CP网络中的信息有用性

Imed Ghnaya, T. Ahmed, M. Mosbah, H. Aniss
{"title":"使用Actor-Critic强化学习最大化车辆CP网络中的信息有用性","authors":"Imed Ghnaya, T. Ahmed, M. Mosbah, H. Aniss","doi":"10.23919/CNSM55787.2022.9964740","DOIUrl":null,"url":null,"abstract":"Cooperative Perception (CP) allows Connected and Autonomous Vehicles (CAVs) to enhance their Environmental Awareness (EA) by sharing locally perceived objects through CP messages (CPMs). European Telecommunications Standards Institute (ETSI) has recently defined a set of CPM generation rules to achieve a trade-off between EA and Channel Busy Ratio (CBR) despite massive perception data. Nonetheless, these rules still lack the consideration of information usefulness, resulting in a considerable volume of useless information transmitted in the CP network. This limitation could increase CBR and thus decrease EA due to the loss of CPMs in the network. This paper introduces CloudAC-IU, a cloud-based deep reinforcement learning approach to lean CAVs to maximize perception information usefulness in the network. Simulation results highlight that the CloudAC-IU enhances EA by decreasing CBR and increasing CPM reception for CAVs compared to state-of-the-art works.","PeriodicalId":232521,"journal":{"name":"2022 18th International Conference on Network and Service Management (CNSM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximizing Information Usefulness in Vehicular CP Networks Using Actor-Critic Reinforcement Learning\",\"authors\":\"Imed Ghnaya, T. Ahmed, M. Mosbah, H. Aniss\",\"doi\":\"10.23919/CNSM55787.2022.9964740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cooperative Perception (CP) allows Connected and Autonomous Vehicles (CAVs) to enhance their Environmental Awareness (EA) by sharing locally perceived objects through CP messages (CPMs). European Telecommunications Standards Institute (ETSI) has recently defined a set of CPM generation rules to achieve a trade-off between EA and Channel Busy Ratio (CBR) despite massive perception data. Nonetheless, these rules still lack the consideration of information usefulness, resulting in a considerable volume of useless information transmitted in the CP network. This limitation could increase CBR and thus decrease EA due to the loss of CPMs in the network. This paper introduces CloudAC-IU, a cloud-based deep reinforcement learning approach to lean CAVs to maximize perception information usefulness in the network. Simulation results highlight that the CloudAC-IU enhances EA by decreasing CBR and increasing CPM reception for CAVs compared to state-of-the-art works.\",\"PeriodicalId\":232521,\"journal\":{\"name\":\"2022 18th International Conference on Network and Service Management (CNSM)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 18th International Conference on Network and Service Management (CNSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CNSM55787.2022.9964740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM55787.2022.9964740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

协同感知(CP)允许联网和自动驾驶汽车(cav)通过CP信息(cpm)共享本地感知对象来增强其环境意识(EA)。欧洲电信标准协会(ETSI)最近定义了一套CPM生成规则,以在海量感知数据下实现EA和信道忙度比(CBR)之间的权衡。然而,这些规则仍然缺乏对信息有用性的考虑,导致大量无用信息在CP网络中传输。这种限制可以增加CBR,从而减少由于网络中cpm的损失而导致的EA。本文介绍了CloudAC-IU,这是一种基于云的深度强化学习方法,用于学习cav以最大化网络中的感知信息有用性。仿真结果表明,与最先进的工程相比,CloudAC-IU通过降低CBR和增加cav的CPM接收来增强EA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximizing Information Usefulness in Vehicular CP Networks Using Actor-Critic Reinforcement Learning
Cooperative Perception (CP) allows Connected and Autonomous Vehicles (CAVs) to enhance their Environmental Awareness (EA) by sharing locally perceived objects through CP messages (CPMs). European Telecommunications Standards Institute (ETSI) has recently defined a set of CPM generation rules to achieve a trade-off between EA and Channel Busy Ratio (CBR) despite massive perception data. Nonetheless, these rules still lack the consideration of information usefulness, resulting in a considerable volume of useless information transmitted in the CP network. This limitation could increase CBR and thus decrease EA due to the loss of CPMs in the network. This paper introduces CloudAC-IU, a cloud-based deep reinforcement learning approach to lean CAVs to maximize perception information usefulness in the network. Simulation results highlight that the CloudAC-IU enhances EA by decreasing CBR and increasing CPM reception for CAVs compared to state-of-the-art works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Function-as-a-Service Orchestration in Fog Computing Environments Intent-based Decentralized Orchestration for Green Energy-aware Provisioning of Fog-native Workflows HSFL: An Efficient Split Federated Learning Framework via Hierarchical Organization Network traffic classification based on periodic behavior detection VM Failure Prediction with Log Analysis using BERT-CNN Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1