大规模随机优化的随机块坐标子代STRONG

Wenyu Wang, H. Wan, Kuo-Hao Chang
{"title":"大规模随机优化的随机块坐标子代STRONG","authors":"Wenyu Wang, H. Wan, Kuo-Hao Chang","doi":"10.1109/WSC.2016.7822126","DOIUrl":null,"url":null,"abstract":"STRONG is a response surface methodology based algorithm that iteratively constructs linear or quadratic fitness model to guide the searching direction within the trust region. Despite its elegance and convergence, one bottleneck of the original STRONG in high-dimensional problems is the high cost per iteration. This paper proposes a new algorithm, RBC-STRONG, that extends the STRONG algorithm with the Random Coordinate Descent optimization framework. We proposed a RBC-STRONG algorithm and proved its convergence property. Our numerical experiments also show that RBC-STRONG achieves better computational performance than existing methods.","PeriodicalId":367269,"journal":{"name":"2016 Winter Simulation Conference (WSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Randomized block coordinate descendant STRONG for large-scale Stochastic Optimization\",\"authors\":\"Wenyu Wang, H. Wan, Kuo-Hao Chang\",\"doi\":\"10.1109/WSC.2016.7822126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"STRONG is a response surface methodology based algorithm that iteratively constructs linear or quadratic fitness model to guide the searching direction within the trust region. Despite its elegance and convergence, one bottleneck of the original STRONG in high-dimensional problems is the high cost per iteration. This paper proposes a new algorithm, RBC-STRONG, that extends the STRONG algorithm with the Random Coordinate Descent optimization framework. We proposed a RBC-STRONG algorithm and proved its convergence property. Our numerical experiments also show that RBC-STRONG achieves better computational performance than existing methods.\",\"PeriodicalId\":367269,\"journal\":{\"name\":\"2016 Winter Simulation Conference (WSC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2016.7822126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2016.7822126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

STRONG是一种基于响应面方法的算法,迭代构建线性或二次适应度模型来指导信任区域内的搜索方向。尽管它的优雅和收敛性,原始STRONG在高维问题中的一个瓶颈是每次迭代的高成本。本文提出了一种新的算法RBC-STRONG,它在STRONG算法的基础上扩展了随机坐标下降优化框架。提出了一种RBC-STRONG算法,并证明了其收敛性。数值实验也表明,RBC-STRONG的计算性能优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Randomized block coordinate descendant STRONG for large-scale Stochastic Optimization
STRONG is a response surface methodology based algorithm that iteratively constructs linear or quadratic fitness model to guide the searching direction within the trust region. Despite its elegance and convergence, one bottleneck of the original STRONG in high-dimensional problems is the high cost per iteration. This paper proposes a new algorithm, RBC-STRONG, that extends the STRONG algorithm with the Random Coordinate Descent optimization framework. We proposed a RBC-STRONG algorithm and proved its convergence property. Our numerical experiments also show that RBC-STRONG achieves better computational performance than existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Simheuristics with Petri net models: Potential applications to logistics and supply chain management A ship block logistics support system based on the shipyard simulation framework Modeling & simulation's role as a service to military and homeland security decision makers Multiple comparisons with a standard using false discovery rates Lean design and analysis of a milk-run delivery system: Case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1