基于深度学习和Pareto最优的多查询视频检索

C. Vural, Enver Akbacak
{"title":"基于深度学习和Pareto最优的多查询视频检索","authors":"C. Vural, Enver Akbacak","doi":"10.1109/SIU49456.2020.9302123","DOIUrl":null,"url":null,"abstract":"Existing video retrieval studies support single query. To the best of our knowledge, there is no multi-query video retrieval method. In this study, an efficient and fast multi-query video retrieval method is proposed for queries having different semantics. The metod supports unlimited number of queries. Real valued features representing a video are extracted by a deep network and are converted into binary codes. Database items that simultaneously most closely resemble multiple queries are retrieved by Pareto front method. Efficiency of the method is determined by means of a designed graphical user interface.","PeriodicalId":312627,"journal":{"name":"2020 28th Signal Processing and Communications Applications Conference (SIU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Query Video Retrieval Based on Deep Learning and Pareto Optimality\",\"authors\":\"C. Vural, Enver Akbacak\",\"doi\":\"10.1109/SIU49456.2020.9302123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing video retrieval studies support single query. To the best of our knowledge, there is no multi-query video retrieval method. In this study, an efficient and fast multi-query video retrieval method is proposed for queries having different semantics. The metod supports unlimited number of queries. Real valued features representing a video are extracted by a deep network and are converted into binary codes. Database items that simultaneously most closely resemble multiple queries are retrieved by Pareto front method. Efficiency of the method is determined by means of a designed graphical user interface.\",\"PeriodicalId\":312627,\"journal\":{\"name\":\"2020 28th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU49456.2020.9302123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU49456.2020.9302123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的视频检索研究支持单一查询。据我们所知,目前还没有多查询视频检索方法。针对不同语义的查询,提出了一种高效、快速的多查询视频检索方法。该方法支持无限数量的查询。通过深度网络提取代表视频的实值特征,并将其转换为二进制代码。同时最接近多个查询的数据库项由Pareto front方法检索。通过设计图形用户界面来确定该方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Query Video Retrieval Based on Deep Learning and Pareto Optimality
Existing video retrieval studies support single query. To the best of our knowledge, there is no multi-query video retrieval method. In this study, an efficient and fast multi-query video retrieval method is proposed for queries having different semantics. The metod supports unlimited number of queries. Real valued features representing a video are extracted by a deep network and are converted into binary codes. Database items that simultaneously most closely resemble multiple queries are retrieved by Pareto front method. Efficiency of the method is determined by means of a designed graphical user interface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Skin Lesion Classification With Deep CNN Ensembles Design of a New System for Upper Extremity Movement Ability Assessment Stock Market Prediction with Stacked Autoencoder Based Feature Reduction Segmentation networks reinforced with attribute profiles for large scale land-cover map production Encoded Deep Features for Visual Place Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1