一种基于斑点和外观的混合框架,用于复杂遮挡下的多目标跟踪

Li-Qun Xu, P. Puig
{"title":"一种基于斑点和外观的混合框架,用于复杂遮挡下的多目标跟踪","authors":"Li-Qun Xu, P. Puig","doi":"10.1109/VSPETS.2005.1570900","DOIUrl":null,"url":null,"abstract":"Static and dynamic occlusions due to stationary scene structures and/or interactions between moving objects are a major concern in tracking multiple objects in dynamic and cluttered visual scenes. We propose a hybrid blob- and appearance-based analysis framework as a solution to the problem, exploiting the strength of both. The core of this framework is an effective probabilistic appearance based technique for complex occlusions handling. We introduce in the conventional likelihood function a novel 'spatial-depth affinity metric' (SDAM), which utilises information of both spatial locations of pixels and dynamic depth ordering of the component objects forming a group, to improve object segmentation during occlusions. Depth ordering estimation is achieved through a combination of top-down and bottom-up approach. Experiments on some real-world difficult scenarios of low resolution and highly compressed videos demonstrate the very promising results achieved.","PeriodicalId":435841,"journal":{"name":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","volume":"542 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A hybrid blob- and appearance-based framework for multi-object tracking through complex occlusions\",\"authors\":\"Li-Qun Xu, P. Puig\",\"doi\":\"10.1109/VSPETS.2005.1570900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static and dynamic occlusions due to stationary scene structures and/or interactions between moving objects are a major concern in tracking multiple objects in dynamic and cluttered visual scenes. We propose a hybrid blob- and appearance-based analysis framework as a solution to the problem, exploiting the strength of both. The core of this framework is an effective probabilistic appearance based technique for complex occlusions handling. We introduce in the conventional likelihood function a novel 'spatial-depth affinity metric' (SDAM), which utilises information of both spatial locations of pixels and dynamic depth ordering of the component objects forming a group, to improve object segmentation during occlusions. Depth ordering estimation is achieved through a combination of top-down and bottom-up approach. Experiments on some real-world difficult scenarios of low resolution and highly compressed videos demonstrate the very promising results achieved.\",\"PeriodicalId\":435841,\"journal\":{\"name\":\"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance\",\"volume\":\"542 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VSPETS.2005.1570900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSPETS.2005.1570900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

由于静止场景结构和/或运动物体之间的相互作用造成的静态和动态遮挡是在动态和混乱的视觉场景中跟踪多个物体的主要问题。我们提出了一个混合的基于blob和基于外观的分析框架来解决这个问题,利用两者的优势。该框架的核心是一种有效的基于概率外观的复杂遮挡处理技术。我们在传统的似然函数中引入了一种新的“空间深度亲和度量”(SDAM),它利用像素的空间位置信息和组成一组的组件对象的动态深度排序信息,以改善遮挡期间的目标分割。深度排序估计是通过自顶向下和自底向上相结合的方法来实现的。在一些现实世界的低分辨率和高度压缩视频的困难场景中进行的实验表明,取得了非常有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid blob- and appearance-based framework for multi-object tracking through complex occlusions
Static and dynamic occlusions due to stationary scene structures and/or interactions between moving objects are a major concern in tracking multiple objects in dynamic and cluttered visual scenes. We propose a hybrid blob- and appearance-based analysis framework as a solution to the problem, exploiting the strength of both. The core of this framework is an effective probabilistic appearance based technique for complex occlusions handling. We introduce in the conventional likelihood function a novel 'spatial-depth affinity metric' (SDAM), which utilises information of both spatial locations of pixels and dynamic depth ordering of the component objects forming a group, to improve object segmentation during occlusions. Depth ordering estimation is achieved through a combination of top-down and bottom-up approach. Experiments on some real-world difficult scenarios of low resolution and highly compressed videos demonstrate the very promising results achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On calibrating a camera network using parabolic trajectories of a bouncing ball Vehicle Class Recognition from Video-Based on 3D Curve Probes A Comparison of Active-Contour Models Based on Blurring and on Marginalization Validation of blind region learning and tracking Object tracking with dynamic feature graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1