基于奇偶校验的ECC及片上通信软错误检测与校正机制

K. Dang, Xuan-Tu Tran
{"title":"基于奇偶校验的ECC及片上通信软错误检测与校正机制","authors":"K. Dang, Xuan-Tu Tran","doi":"10.1109/MCSoC2018.2018.00035","DOIUrl":null,"url":null,"abstract":"Soft errors are expecting to be accelerated with the shrinking of feature sizes due to low operating voltages and high circuit density. However, soft error rates per single-bit is expectedly reduced with technology scaling. With tight requirements for the area and energy consumption, using a low complexity and high coding rate error correction code (ECC) to handle soft errors in on-chip communication is necessary. In this work, we use Parity Product Code (PPC) and propose several supporting mechanisms to detect and correct soft errors. First, PPC can work as a parity check to detect single event upset (SEU) inside each flit. Then, to reduce the needed retransmission, a Razor flip-flop with parity check (RFF-w-P) is proposed to work with PPC. Since PPC can act like forward error correction (FEC), we also present a selective transmission in bit-indexes by using a transposable FIFO. Therefore, the proposed mechanism not only guarantee single error detection/correction but also provide 2+ error correction as FEC. The proposed work also reduce the area cost of FIFO in comparison to traditional coding methods and adapt too multiple error rates.","PeriodicalId":413836,"journal":{"name":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Parity-Based ECC and Mechanism for Detecting and Correcting Soft Errors in On-Chip Communication\",\"authors\":\"K. Dang, Xuan-Tu Tran\",\"doi\":\"10.1109/MCSoC2018.2018.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft errors are expecting to be accelerated with the shrinking of feature sizes due to low operating voltages and high circuit density. However, soft error rates per single-bit is expectedly reduced with technology scaling. With tight requirements for the area and energy consumption, using a low complexity and high coding rate error correction code (ECC) to handle soft errors in on-chip communication is necessary. In this work, we use Parity Product Code (PPC) and propose several supporting mechanisms to detect and correct soft errors. First, PPC can work as a parity check to detect single event upset (SEU) inside each flit. Then, to reduce the needed retransmission, a Razor flip-flop with parity check (RFF-w-P) is proposed to work with PPC. Since PPC can act like forward error correction (FEC), we also present a selective transmission in bit-indexes by using a transposable FIFO. Therefore, the proposed mechanism not only guarantee single error detection/correction but also provide 2+ error correction as FEC. The proposed work also reduce the area cost of FIFO in comparison to traditional coding methods and adapt too multiple error rates.\",\"PeriodicalId\":413836,\"journal\":{\"name\":\"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC2018.2018.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC2018.2018.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

由于低工作电压和高电路密度,软误差预计会随着特征尺寸的缩小而加速。然而,随着技术的扩展,每比特的软错误率有望降低。在对面积和能耗要求严格的情况下,采用低复杂度、高编码率的ECC (error correction code)来处理片上通信中的软错误是必要的。在这项工作中,我们使用奇偶产品码(PPC)并提出了几种支持机制来检测和纠正软错误。首先,PPC可以作为奇偶校验来检测每次飞行中的单事件干扰(SEU)。然后,为了减少所需的重传,提出了带奇偶校验(RFF-w-P)的Razor触发器与PPC一起工作。由于PPC可以像前向纠错(FEC)一样起作用,我们还通过使用转座FIFO提出了位索引的选择性传输。因此,所提出的机制既能保证单次错误检测/纠错,又能提供2+纠错作为FEC。与传统的编码方法相比,所提出的工作还降低了FIFO的面积成本,并适应了太多的错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parity-Based ECC and Mechanism for Detecting and Correcting Soft Errors in On-Chip Communication
Soft errors are expecting to be accelerated with the shrinking of feature sizes due to low operating voltages and high circuit density. However, soft error rates per single-bit is expectedly reduced with technology scaling. With tight requirements for the area and energy consumption, using a low complexity and high coding rate error correction code (ECC) to handle soft errors in on-chip communication is necessary. In this work, we use Parity Product Code (PPC) and propose several supporting mechanisms to detect and correct soft errors. First, PPC can work as a parity check to detect single event upset (SEU) inside each flit. Then, to reduce the needed retransmission, a Razor flip-flop with parity check (RFF-w-P) is proposed to work with PPC. Since PPC can act like forward error correction (FEC), we also present a selective transmission in bit-indexes by using a transposable FIFO. Therefore, the proposed mechanism not only guarantee single error detection/correction but also provide 2+ error correction as FEC. The proposed work also reduce the area cost of FIFO in comparison to traditional coding methods and adapt too multiple error rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Evaluation of a Configurable Hardware Merge Sorter for Various Output Records On-Line Cost-Aware Workflow Allocation in Heterogeneous Computing Environments Simplified Quadcopter Simulation Model for Spike-Based Hardware PID Controller using SystemC-AMS Search Space Reduction for Parameter Tuning of a Tsunami Simulation on the Intel Knights Landing Processor Unifying Wire and Time Scheduling for Highlevel Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1