关联简单时态网络的列生成方法

Andrew Murray, A. Arulselvan, Michael Cashmore, M. Roper, J. Frank
{"title":"关联简单时态网络的列生成方法","authors":"Andrew Murray, A. Arulselvan, Michael Cashmore, M. Roper, J. Frank","doi":"10.1609/icaps.v33i1.27207","DOIUrl":null,"url":null,"abstract":"Probabilistic Simple Temporal Networks (PSTN) represent scheduling problems under temporal uncertainty. Strong controllability (SC) of PSTNs involves finding a schedule to a PSTN that maximises the probability that all constraints are satisfied (robustness). Previous approaches to this problem assume independence of probabilistic durations, and approximate the risk by bounding it above using Boole’s inequality. This gives no guarantee of finding the schedule optimising robustness, and fails to consider correlations between probabilistic durations that frequently arise in practical applications. In this paper, we formally define the Correlated Simple Temporal Network (Corr-STN) which generalises the PSTN by removing the restriction of independence. We show that the problem of Corr-STN SC is convex for a large class of multivariate (log-concave) distributions. We then introduce an algorithm capable of finding optimal SC schedules to Corr-STNs, using the column generation method. Finally, we validate our approach on a number of Corr-STNs and find that our method offers more robust solutions when compared with prior approaches.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Column Generation Approach to Correlated Simple Temporal Networks\",\"authors\":\"Andrew Murray, A. Arulselvan, Michael Cashmore, M. Roper, J. Frank\",\"doi\":\"10.1609/icaps.v33i1.27207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probabilistic Simple Temporal Networks (PSTN) represent scheduling problems under temporal uncertainty. Strong controllability (SC) of PSTNs involves finding a schedule to a PSTN that maximises the probability that all constraints are satisfied (robustness). Previous approaches to this problem assume independence of probabilistic durations, and approximate the risk by bounding it above using Boole’s inequality. This gives no guarantee of finding the schedule optimising robustness, and fails to consider correlations between probabilistic durations that frequently arise in practical applications. In this paper, we formally define the Correlated Simple Temporal Network (Corr-STN) which generalises the PSTN by removing the restriction of independence. We show that the problem of Corr-STN SC is convex for a large class of multivariate (log-concave) distributions. We then introduce an algorithm capable of finding optimal SC schedules to Corr-STNs, using the column generation method. Finally, we validate our approach on a number of Corr-STNs and find that our method offers more robust solutions when compared with prior approaches.\",\"PeriodicalId\":239898,\"journal\":{\"name\":\"International Conference on Automated Planning and Scheduling\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Automated Planning and Scheduling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icaps.v33i1.27207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v33i1.27207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

概率简单时态网络(PSTN)代表了时间不确定性下的调度问题。PSTN的强可控性(SC)涉及找到一个最大概率满足所有约束的PSTN调度(鲁棒性)。以前解决这个问题的方法假设概率持续时间的独立性,并通过使用布尔不等式将其限定在上面来近似风险。这不能保证找到调度优化鲁棒性,并且不能考虑在实际应用中经常出现的概率持续时间之间的相关性。在本文中,我们正式定义了相关简单时态网络(Corr-STN),它通过消除独立性的限制来推广PSTN。我们证明了Corr-STN SC问题对于一大类多元(log-凹)分布是凸的。然后,我们介绍了一种能够使用列生成方法为Corr-STNs找到最优SC调度的算法。最后,我们在许多corr - stn上验证了我们的方法,并发现与之前的方法相比,我们的方法提供了更健壮的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Column Generation Approach to Correlated Simple Temporal Networks
Probabilistic Simple Temporal Networks (PSTN) represent scheduling problems under temporal uncertainty. Strong controllability (SC) of PSTNs involves finding a schedule to a PSTN that maximises the probability that all constraints are satisfied (robustness). Previous approaches to this problem assume independence of probabilistic durations, and approximate the risk by bounding it above using Boole’s inequality. This gives no guarantee of finding the schedule optimising robustness, and fails to consider correlations between probabilistic durations that frequently arise in practical applications. In this paper, we formally define the Correlated Simple Temporal Network (Corr-STN) which generalises the PSTN by removing the restriction of independence. We show that the problem of Corr-STN SC is convex for a large class of multivariate (log-concave) distributions. We then introduce an algorithm capable of finding optimal SC schedules to Corr-STNs, using the column generation method. Finally, we validate our approach on a number of Corr-STNs and find that our method offers more robust solutions when compared with prior approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Robust Resource-Constrained Scheduling with Graph Neural Networks Solving the Multi-Choice Two Dimensional Shelf Strip Packing Problem with Time Windows Generalizing Action Justification and Causal Links to Policies Exact Anytime Multi-Agent Path Finding Using Branch-and-Cut-and-Price and Large Neighborhood Search A Constraint Programming Solution to the Guillotine Rectangular Cutting Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1